A.Sivaramakrishnan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1), 2014, 236-246

Medical Image Analysis – A Review

A.Sivaramakrishnan¹, Dr.M.Karnan², Dr.R.Sivakumar³

¹Assistant Professor, Department of Computer Application, Karunya University, India ²Professor and Head, Department of Computer Science and Engineering, Tamilnadu College of Engineering, India ³Professor, Department of Information Technology, Tamilnadu College of Engineering, India

Abstract— In this survey work various automatic detection methods of microcalcifications and brain tumor through mammograms and MRI has been studied and compared for the period of more than two decades. This is used to focus on the future of developments of medical image processing in medicine and healthcare. We have described several methods in medical image processing and to discussed requirements and properties of techniques in tumor detection. This work is used to give more information about tumor detection and segmentation. It is a milestone for analyzing all technologies relevant to tumor from mammogram and MRI in Medical image processing. In this work, various steps in detection of automatic detection :i) The Preprocessing and Enhancement Technique ii) Segmentation Algorithm iii) Feature Extraction iv) Classification v)Performance Analysis using Receiver Operating Characteristics and their performance have been studied and compared.

Keywords— MRI, mammogram, Enhancement, Feature Extraction, Receiver Operating Characteristics.

I. INTRODUCTION

In this chapter, methods of automatic detection of tumour in digitized MRI and mammograms used in various stages of intelligent systems for detection of masses and brain tumour are summarized and compared. In particular, the preprocessing and enhancement, segmentation algorithms, feature extraction, selection and classification, classifiers, receiver operating characteristics curve analysis and their performance are studied and compared.

II. ENHANCEMENT AND PREPROCESSING

Several authors have suggested various techniques for preprocessing and enhancement in the last two decades. The task of medical image enhancement is to sharpen the edges to increase the contrast between suspicious regions and the background. Image enhancement includes intensity and contrast manipulation, noise reduction, background removal, edges sharpening, filtering, etc. Table 2.1 and 2.1a shows the overview of enhancement techniques for mammogram and MRI

Table 2.1 An overview of enhancement techniques for

	mammogram	
Method	Description	Tzanakou 1
median filter(Lai et al 1989)	This filter can remove the noise without significantly distorting the signal.	Adaptive no equalization
Central Weighted Median Filter (Qian et al 1994)	A CWMF with a large central weight preserves more image detail but suppresses less noise than a filter with a	(Veldkamp Karssemeije
	smaller central weight.	Gaussian sn

Method	Description
Model-based, scatter function (Highnam et al 1994)	A weighting mask has been calculated which represents the percentage of the total scatter reaching the central pixel and coming from the column of Lucite above each pixel in a neighborhood.
First derivative and the local statistics (Kim et al1997)	The adaptive image enhancement method exploits the first derivative operations using the Sobel operators or the compass operators and the local statistics of a mammographic image are used for an adaptive realization.
Fractal modeling (Li et al 1997)	The key point of fractal modeling is to explore the self-similarity property of images.
Median filter[Thangavel and karnan 2005]	Computer aided detection of microcalcification in digitized mammogram using median filter and genetic algorithm.
Fuzzy logic (Kovalerchuk et al 1997)	Fuzzy logic has the potential of opening a new and promising direction for effective and early breast cancer diagnosis.
Wavelet transform, multiscale features (Chang and Laine 1999)	Wavelet transform, multiscale features, Coherence measure and dominant orientation clearly improved discrimination of features from complex surrounding tissue and structure in dense mammograms.
Filtering tech (Kobatake et al 1999)	This filter output for the tumor is very high and its region is well isolated from its background.
Region based Enhancement (Ferrari et al 1999)	Region based contrast enhancement uses each pixel as a seed to grow a region. Applying an empirical transformation based on each region's seed pixel value, its contrast and its background enhances contrast.
Wavelet, Morphological operation (Cordella et al 1999)	Fractal approach compared with the partial wavelet reconstruction and the morphological operation approaches.
Unsharp Masking, Sobel Operators (Bhangale et al 2000; Enderwich and Tzanakou 1997]	The Unsharp masking method reduces the low frequency information while amplified the high frequency detail.
Adaptive noise equalization (Veldkamp and Karacamaijar 2000)	It gives much better results than does a fixed noise equalization, probably because noise characteristics are mammogram dependent, caused by variation of film type and film
Karssemeijer 2000)	development characteristics.

Method	Description
and sub-sampling (Mudigonda et al 2001)	intensity patterns of mass regions to form smooth hills with respect to their surroundings in the low resolution image and help in estimating the approximate extent of isolated regions present in the image.
Quantum noise assumption (Rogova et al 1999)	If quantum noise is assumed the dominant noise source present, a square root model will provide an accurate estimate of the noise with respect to gray level.
Matched filtering (Bocchi et al 2004)	In particular, Fractional Brownian Motion (FBM) can model non-stationary random fields with stationary increments. In addition, a stationary power spectrum can be attached to FBMs leading to an approximate implementation of the enhancement filter via conventional matched filtering.

Table 2.1.a An overview of enhancement techniqu	ues for
MRI	

MRI Methods	Description
Methods	_
Oliver et al (2005)	MRIs have been acquired in
Standard Imaging Protocol	the standard follow-up.after
	surgical resection.
Dana et al (2007)	It provides the solution of
Statistical Parametric	noise reduction, Inter-slice
Mapping,	intensity variation correction,
Pipe line Approach	Intra-volume bias field
	correction
Jayaram et al (2002)	It showed detections of tumor
Content Based model, Shape	with decrease in pixel count in
based,Texture based	binary images, increase in
technique, Histogram and	image intensity, High numbers
Profilling Method	of high intensity pixel.
Tracking algorithm [Jaya et	De-noising of MR brain
al 2009]	images using the tracking
	algorithm .
Elizabeth et al (2005)	It was more robust to noise and
Pixel Histograms,	it can improve the integrity
Morphological Process	performance.
Leung et al (2003)	
Boundary Detection	To obtain the fine result in the
Algorithm, Generalized Fuzzy	tumor consideration.
operator(GFO),	
	Separate brain image, from
Zu et al (2004)	head image removal of residual
Histogram based(HB),Sub-	fragments such as sinus,
second imaging technique	cerebrospinal/fluid, dura,
	marrow.
Gray (1997)	Large volume of data
Neural Networks, Genetic	processed successfully.
Programming	
	It is used to align the image
Mark et al (2005)	properly and it uses left-to-
Statistical Parametric	right symmetry to confer
Mapping Method	robustness to areas of
	abnormality.
Toshiharu et al (2003)	Separate the components in
Independent Component	MR images
Analysis(ICA)	mix mageo
Farahat et al (2006)	It is used to analyse different
Head Model, Finite	Tissue types.
Difference Time-	rissue types.

Methods	Description
Domain(FDTD)	
Kyeong et al (2004)	
Discrete Wavelet	DWT provides higher intensity images than other.
Transform(DWT)	-
Lim et al (1989)	To remove the skull and scalp
Stripping algorithm	portions from each axial
Thangavel et al (2005)	section.
Gradient-Based Method,	Shows the validity of detection
Median Filter. Normalization	of Memmographic lesions.
Method	
Chunyan et al (2004)	Detects neoplastic changes in
Triple Quantum Filtered	the brain before angiogenesis
Sodium MRI (TQF)	and blood brain barrier (BBB)
Technique	breakdown develop.
Tsai et al (1995)	Takes care of local noisy fluctuations from MR images.
Low pass Filter Boada et al (2004)	Minimizes the effects of extra
Triple Quantum Filtered	cellular fluids and Found Non-
(TQF) Sodium NMR	Contrast Enhancing tissue
Aria et al (2002)	
Gadolinium-	Provides additional
Diethylenetriaminepentaacetic	independent information and
acid (Gd	improve the accuracy.
DTPA)Enhancement	
Boada (2004) Novel image Approach	Earlier detection of non- contrast enhancing tissue.
Amini (2003)	This filter enhances the tumor
Prewitt edge-finding filter	tissue greatly.
Zhe chen (2003)	It is used to remove
Morphological Filter	background.
Corina et al (2005)	Enhances image Boundaries.
Gaussian Filter	-
Dimitris et al (2006)	It is used to remove the tagging
Gabor Filter Bank	lines and enhance the tag-
technique	patterned region. Enhances the image by
Hideki et al (1990)	smoothing the noise gray level
V-filter	distribution while retaining the
	edge.
Gordon et al (2006)	Enhances the utility of glyph-
Anisotropic sample	based tensor visualization.
Shishir et al (2006)	Non – Contrast enhancing
Non linear Filter	Brain Volumes are linearly
	aligned.
Salman et al (2005)	It is usually convenient to preprocess the image by using
Region Growing Filter	a noise reduction filter.
Seen at al (2001)	It generates enhancement data
Sean et al (2001)	volumes. These are highly
K-nearest neighbour Algorithm	correlated with manually
	defined standard.
Michael et al (1988)	Filter noise from source image.
Non linear Filter	
Sonali et al (2012) Median Filter	To Remove noise on the MRI.
integrant i inter	1

III. SEGMENTATION

Segmentation is the initial step in any image analysis. There are two different tasks for segmentation of medical images. The main task is to obtain the locations of suspicious regions to assist radiologists in diagnosis. Image segmentation has been approached from a wide variety of perspectives: region-based approach, morphological operation, multi-scale analysis, fuzzy approaches and stochastic approaches have been used for mammogram image segmentation but with some limitations. Table 3.1 and 3.1.a shows the overview of segmentation techniques for mammogram and MRI.

Table 3.1 An overview of segmentation techniques for mammogram

Methods	Description
Coursian filter	The weighted difference of
Gaussian filter,	Gaussian makes use of the
morphological filter,	knowledge of the approximate size
conditional thickening	of the spots. It also requires an idea
(Dengler et al 1993)	of the inter-spot distance.
Adaptive thresholding,	An MRF model-based
MRF model-based	segmentation belongs to partitional
method, fuzzy binary	clustering, but it also has the ability
decision tree (Li et al	to model image joint distributions
1995)	in terms of local spatial interaction.
1993)	*
	Mammograms possess structures
Fractal [Li et al 1997; Li	with high local self-similarity that
et al 1996) model	is the basic property of fractal
	object. However, the computation
	time is high.
	Mammogram image analysis using
Matchennistic -1	metaheuristic algorithm. Ant
Metaheuristic algorithm	Colony algorithm and genetic
[Thangavel et al 2005,	algorithm is used to detect the
2006]	microcalcification in digitized
	mammogram.
	Works best when the region
Region growing	homogeneity criterion is easy to
approach, Surrounding	define. It depends on the selection
region dependency	
(Kim et al 1998)	of seed region and the termination
	conditions.
	When using the multi-scale and
Top-hat, Morphological	multi-structuring elements, the
filters with multi-scale	results are not affected by the
and Multi elements	complex background and the
[Mossi and Albiol 1999].	extracted images are not distorted
	much.
	It does not need a prior information
Histogram thresholding,	for the histogram thresholding of
MRF (Peters and	the image and can be used widely
Skowron2004)	work very well with low
Site (Feinzele F)	computation complexity.
	Due to variable shapes of masses,
	it is best to use fuzzy rules to
Fuzzy logic (Cheng et al	
1998; Cheng et al 1998;	perform approximate inference.
Cheng et al 2004)	However, the determination of
c ,	fuzzy membership is not easy.
ACO [Subash Chandra	Microcalcification identification in
Bose et al 2012]	Mammograms using Soft
	Computing Techniques
	A Hybrid Meta Heuristic
Meta Heuristic Algorithm	Algorithm for Discovering
[Rajiv Gandhi et al 2012]	Classification Rule in medical
1	Data Mining
Enhanced Artificial Bee	Early Breast cancer detection
	through Mammogram Image using
Colony Optimization	
[Sivakumar and Karnan	Enhanced Artificial Bee Colony Optimization Algorithm
	Untimization Algorithm
2012]	
	Medical Image Analysis Using
FCM [Joseph Peter and Karnan 2013]	

Methods	Description
Multi-channel wavelet	Due to its ability of discriminating
transform, Multi-scale	different frequencies, the method
analysis, Decimated	can preserve the resolution of the
wavelet transform	portion of ROI. Moreover, it does
(Bocchi et al 2004;	not require the use of heuristics or
Pandey et al 2000 ; Song	a prior knowledge of the size and
et al 1996)	the resolution of the mammogram.
	A partial thresholding is performed
	for noise reduction. A Setting
Edge detection,	threshold value is also obtained
thresholding, Deformable	from the edge detector evaluation.
model (Valverde et al	This image is introduced as input
2004)	to the local approach stage, where
	the contour snake is initialized with
	a circumference.
	Automatically Detect the Breast
Particle Swarm	Border and Nipple position to
Optimization [Karnan et	Identify the Suspicious Regions on
al 2008]	Digital Mammograms Based on
ai 2000j	Asymmetries using hybrid Particle
	Swarm Optimization

Table 3.1a. An overview of segmentation techniques for MRI

Methods	Description
Genetic Algorithm (karnan	It segment tumor region from
and logeswari)	background MRI.
Fuzzy Cmeans (FCM)	It extracts the image edges
unsupervised	robustly and moves the vertices
clustering(Philips et	towards the boundaries of the
al.1995)	desired structure.
Supervised k-nearest	A sample set of pixel vectors
neighbor(kNN)rule, semi-	(ROI) is selected by an expert
supervised fuzzy c-	observer, and the vectors are
means(SFCM)	assigned to different tissue
(vaidyanathan et.al.1997)	classes.
(valdyallatilali et.al.1997)	
Level set Surface Model	To produce qualitative results
(james et.al 2000)	from several different datasets
	for brain tumor segmentation.
Fuzzy C Means Clustering	To segment tumor regions from
Algorithm (SR	background MRI well.
Kannan2005)	background with wen.
Seed Growing	Seed propagation was
Method(1997)	independently performed.
(vaidyanathan et.al.1997)	
Genetic Algorithm	To segment and identify nipple
(Thangavel and karnan	position from mammogram
2007)	image.
Pipe line approach,	
Expectation Maximization	To estimate and processed
(EM) Algorithm(Jeffrey	tumor volume successfully.
and soloman 2004)	
Hybrid Deformable	It Integrates both shape and
model, Meta Morphs model,	interior texture, its dynamics
Novels Shape, Texture	are derived coherency from
Integration, Graphical	both boundary and region
Model, Learning Methods	information in a common
(dimitris et al.2006)	variational framework.
Fuzzy C-means Clustering	
Algorithm(FCM),Neural	It processes seeking the optimal
Network Model (shan shen	labeling of the image pixels.
et al.2005)	
Atlas Matching Technique,	To Simulate the invasion of the
Finite Element	GBM in the brain paren chyma.

Method(FEM) (oliver et.al	
2005)	
Artificial Bee Colony [Neeraja et al 2013]	Brain Tumor Segmentation In MRI Image Using Unsupervised Artificial Bee Colony And FCM Clustering
Soft Computing [Sivaramakrishnan and Karnan 2013]	A Novel Based Approach for Extraction of Brain Tumor in MRI Images Using Soft Computing Techniques
Expectation Maximization scheme(EM) (benedicte et.al.2005)	Its performance is below than Seni-Automated.
Automatic Two – dimensional Segmentation.(zhen chen et.al 2003)	Each PET plane is segmented.
Ground Truth Algorithm (marcel et.al 2003,2003,2004, 2007,2009)	It can provide the means for objective assessment of segmentation performance.
Texture Features, Self- Organizing Map(SOM) (logeswari and karnan 2010)	The tumor area is segmented from brain MRI.
Morphological Operations, Fuzzy model of Regions of Interest(ROI) (jing et.al.2001)	It is use to represent more appropriately the knowledge about distance, shape and interactions of structures.
Fuzzy C-means(Philips et al.1995: siyal et.al.2005)	To generate segmentation images that display clinically important neuroanatomic tissue and neuropathologic tissue contrast information from raw MR image data.
Amanpreet (2012)	To segment and deduct suspicious region from background using PSO algorithm based on colony aptitude and provide better result than other parallel algorithm.
Region-based method, Region growing method, Region-of-interest(ROI), Multi resolution edge detection method, modified region segmentation method(angel et.al 2012)	To segment brain tissue structure from the multi- resolution images are utilized.
Graph-Based Method,Generative Model, Weighted Aggregation Algorithm(jasoncary 2006)	It Indicates the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of brain tumor
Iterative Self-Organizing Data Analysis Techniques(ISO DATA),Unsupervised Computer Segmentation Algorithm,Novel Model (Michel Jacob 2001)	Multiparametric ISODATA volume was significantly Identifies.
Spatio-Temporal Model(Jeffery soloman et al.2006)	The sensitivity and specificity of tumor segmentation using this spatio-temporal model is improved over commonly used spatial or temporal models alone.

	Γ
Multiscale Method, Multiscale linking Model, Supervised Segmentation Method (naaaathan moon et al.2002)	It was shown that the errors are in the order of or smaller than reported in literature.
Semi-Supervised Fuzzy C- Means Clustering Method,K nearest neighbor(Knn),Gray level thresholding & Seed Growing(ISG-SG),Manual Pixel Labelling(GT) (vaithyanathan et.al.1995)	This method was achieved good performance and reduction operation time.
Hybrid level set (HLS)(xie et.al,2005)	It provides objective, reproducible segmentations that are close to the manual results.
Fuzzy Model(webei et.al.2007)	Average Probability of correct detection was found.
Deformable Model,Med- Volumeter(chunvan et.al.2004)	The target area is segmented under level set frame.
3D Variational Segmentation Method(dana cobzas et.al.2007)	The tumor area was segmented accurately.
Fuzzy k-means, GA (maoyang et,al2005)	A thresholding is performed for noise reduction.
Supervised technique- Mountain Method,Maximum Likelihood,K-nearest neighbour,Artificial neural network.(Robert et.al.1997)	Producing excellent partitions of large data sets.
Fuzzy Connectedness & Fuzzy sets(jayaram udupa and punam saha 2003)	It allows the spatio-topological concept of hanging- togetherness of image elements in the presence of a gradation of intensities stemming from natural material heterogeneities, blurringand other phenomenonrelated artifacts.
Expectation-Maximization (EM)(Nathan mano et.al.2002)	It separates WM,GM and CSF from ti and t2 weighted image.
Classic snaks,Deformable Contour model (amini et.al.2003)	To segment T1 weighted images of the brain with low – contrast structures and discontinuous edges
Markov random field model (kabir et .al.2007)	Segmentations obtained with single sequences to that obtained with multiple sequences.
Generalized fuzzy operator(GFO),Contour Deformable model(leung et.al.2003)	The tumor regions are segmented
Atlas-based segmentation (pierreyes et.al 2005)	Propagation of the labeled structures on to the MRI
Expectation-Maximization Technique,Robest Estimation,VALMET Segmentation validation tool (marcel et.al.2003)	To segment tumor, edema and ventricles.
Multilayer segmentation, Automatic region	The original image is segmented into various spatial

segmentation	regions.
(xinbai et.al.2003) Content-based retrieval	
	Image segmented successfully
technique (zhechen et.al.2003)	Image segmented successfully.
Atlas-driven segmentation	Automatically tumor region is
(guido 2003)	segmented successfully.
Fuzzy methods(zushan	Results show relatively high
et.al.2004)	accuracy.
Active Contour	accuracy.
Model(corina draphca et.al	The tumor regions are
2005)	segmented from MRI.
Evaluating Image	
Segmentation Algorithm	High Accuracy appeared in
(jayaram udupa 2002)	segmentation.
Fuzzy mean	
Algorithm(FCM),Silhovette	Its provide Easiest way to find
Method(SM)(SR	appropriate structure in the data
kannan2005)	of MRI
Contour Tracing	
Algorithm, Region	To establish boundaries in order
Segmentation(hideki et. Al	to partition the image space into meaningful regions.
1990)	meaningrui regions.
Soft-Margin Support	It can involve millions of
Vector	training and testing instances
Machine(SVM)(mark	with a relatively small feature
Schmidt et.al. 2005)	set.
k-means Clustering	It separates background from
Algorithm(2004)	brain pixels accurately.
	It is used to convert a given
k-means clustering(ming	gray-level MR image into a
et.al 2007)	color space image and it
ct.ai 2007)	separates the position of tumor
	objects from MRI
Statistical Model ,Markov	
Random Field, Level Set	Non-brain structures removed
Method, Non-Uniformity	and it estimates the tissue
Correction Method(ranos	
Correction Method(ranos et.al 2004)	and it estimates the tissue intensity variation.
Correction Method(ranos et.al 2004) Multi-Scale Watershed	and it estimates the tissue intensity variation. It is used to select the subsets of
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam	and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004)	and it estimates the tissue intensity variation. It is used to select the subsets of
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model,	and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and	and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan	and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing,	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing,	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002) Population-Based Tissue	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor. It is used to select the subsets of the expected regions efficiently.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002) Population-Based Tissue Maps, K Nearest Neighbor	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor. It is used to select the subsets of the expected regions efficiently. It is used to differentiate tissue
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002) Population-Based Tissue Maps, K Nearest Neighbor Model. (sean haney et.al	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor. It is used to select the subsets of the expected regions efficiently.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002) Population-Based Tissue Maps, K Nearest Neighbor Model. (sean haney et.al 2001)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor. It is used to select the subsets of the expected regions efficiently. It is used to differentiate tissue types with high accuracy.
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002) Population-Based Tissue Maps, K Nearest Neighbor Model. (sean haney et.al 2001) Level-Set Surface Model	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor. It is used to select the subsets of the expected regions efficiently. It is used to differentiate tissue types with high accuracy. It is used to segment target
Correction Method(ranos et.al 2004) Multi-Scale Watershed Segmentation(erck dam et.al 2004) Deformable Region Model, Shrinking Method and Snake Method (chan et.al.1996) Hidden Markov Chain Model(HMC) (briq et.al.2008) Seeded Region Growing, Active Contour Snakes Model (salman et.al 2005) Hybrid level Set (HLS) Model(kai xie et.al 2005) Expectation Maximization(EM) Algorithm, MRF(david gerind et.al.2002) Population-Based Tissue Maps, K Nearest Neighbor Model. (sean haney et.al 2001)	 and it estimates the tissue intensity variation. It is used to select the subsets of the expected regions automatically. It is used to locate the boundary of an object quickly. To produce ever finer resolution in spectral, spatial and temporal data. It is based on extraction of a connected set of pixels whose pixel intensities are consistent with pixel statistics of a seed point. It is used to segment edema and tumor. It is used to select the subsets of the expected regions efficiently. It is used to differentiate tissue types with high accuracy.

machine(zhou et.al. 2005)	of an object quickly.
GPU based Segmentation(aaron et.al 20032003)	This system found interactivity users to produce good, reliable segmentation on MRI and it produced qualitative and quantitative for brain tumor detection
Genetic Algorithm (karnan	Segment objective region from
and thangavel 2007)	MRI.
Self organizing Map(SOM) (logeswari and karnan 2010)	Segment the suspicious region.
Standard Deterministic	To apply robust segmentation
Annealing(DA) and Fuzzy	on brain MRI images for
C Means (xi-lei yang et.al	segmenting tumor pixels on
2008)	MRI.
Bacteria Foraging	MRI Brain Image
Optimization Algorithm	Enhancement, Feature
[Ben George and Karnan	Extraction and Classification of
2012]	Brain Tumor using BFOA

IV. FEATURE EXTRACTION AND SELECTION

The textural features can be extracted from the cooccurrence matrix. They are related to specific textural characteristics such as the homogeneity, contrast, entropy, energy and regularity of the structure. In this paper, the texture analysis methods such as, Surrounding Region Dependency Matrix, Spatial Gray Level Dependency Matrix, Gray Level Difference Matrix, Gray Level Run Length Matrix are used to extract the features from the segmented image.Feature extraction is a general term for methods of constructing combinations of the variables to get around these problems while still describing the data with sufficient result. It is defined as the operation to quantify the image quality through various parameters or functions, which are applied to the original image. Feature extraction involves simplifying the amount of resources required to describe a large set of data accurately.

Today, one of the main problems in machine learning and statistics is keeping track of the most relevant information. For this purpose, feature selection techniques are addressed. The major aims of feature selection for classification are finding a subset of variables those results in more accurate classifiers and constructing more compact models. Therefore, feature selection will filter out those variables that are irrelevant for the specific model. The selection should only capture the relevant features while not over fitting the data. Also there is a reduction in the sample size needed for good generalization.

Table 4.1 an overview for Feature Extraction and	d Selection
--	-------------

Methods	Description
Back Propagation Network(BPN), Ant Colony Optimization technique(ACO) (thangavel and karnan 2005)	Masses were extracted completely.
Multi-scale Gabor-type Feature set(dana cobaz et.al.2007)	Accurate results to be obtained with a relatively small number of training images.
Deformable region	The model provides fast

Methods	Description	Methods	Description
model,Active contour model,Kolmogorov-	result.	K-Nearest Neighbor Classifier	24 images.
Smirnov(KS),Point Sampling technique.(albert law 2002)		Recursive feature elimination	To determine these optimal hyper-planes, It Solves a convex
Wavelet Transform, Wavelet Packets(azadeh et.al 2004)	Related features are extracted from the background issue.	based on Support Vector Machine(SVM RFE), Genetic	quadratic programming problem. It is use to get optimal values. It
Fuzzy C-means(FCM) Unsupervised clustering, Morphological	To extract the image edges robustly.	Algorithm (GA) (mao yang 2005)	Achieves high classification accuracies with genes. Performance is very Satisfied.
Operators.(amini et.al.2003) Optimal Residual Extraction (xin bai et.al.2003)	Masses were extracted completely	Support Vector Machines(SVM)(dana cobzas et.al. 2004)	To predict sub cellular localization.
Morphologic Operation(zuchen et.al 2004)	To extract the sulcal images from the brain images.	Multi-Layer Feed Forward Neural Network, Support	Used to classify the tumor
Rough Set Particle Swarm Optimization(xiang vang et.al 2006)	It can generate more general decision rules and better classification quality of new	Vector Machine(SVM)(corina drapaca 2005)	regions from non-tumor regions.
Kruskal-Wallistest, Fisher Discriminant Criterion ,Relief- F Algorithm and Least Squares	samples. It is used to reduce the dimension of the input space	Bayesian Model(Jason carso 2006)	Each region is assigned a most likely model class according to a set of learned model classes
– Support Vector Machine(LS- SVM) (jan luts et.al.2007)	and can extract feature set. Classification rule discovery	3D-Expectation Maximization Method, Hidden Markov Model	To classify the tumor Region
with ant colony optimization	with ant colony optimization	(Jeffrey soloman 2006) Voxel Classification,	
[Jaganathan et al 2007]	and improved Quick Reduct algorithm for the medical images.	Geometric Model(guido 2003)	To classify the tumor regions from non-tumor regions.
Relative Reduct Algorithm	Medical data Attribute Reduction using Forward	Multilayer preceptron neural network.(azadeh 2004)	To classify the tumor features extracted from the spectra.
[Kalyani and Karnan 2010]	Selection and Relative Reduct Algorithm	Supervised voxal Classification.	The tumors classified successfully.
Artifcial Bee colony [Mary Jeyanthi Prem and Karnan 2013]	Business Intelligence using Optimization techniques for Decision Making	(guido2003)	90.8% low from high grade tumors and 85.6% less from
V. Classifiers		Support Vector Machines(SVMs),Decision Tree(DT)	highly aggressive tumors are classified clearly. The ability of

V. CLASSIFIERS

Classifiers play an important role in the implementation of intelligent system to identify the tumour from mammogram and MRI image. The features are given as input to the classifiers to classify the medical image into normal and abnormal

Methods	Description
Woods et al. 1993	Area under ROC curve is 0.9 for
Binary decision tree	24 images.
Woods et al. 1993	Area under ROC curve is 0.918
Quadratic Classifier	for 24 images.
Caldwell et al 1990., Nishikawa et al 1990. Woods et al 1995. Nishikawa et al 1992. Nishikawa et al 1993. Linear classifier	Maximum area 0.70 under ROC for 70 images.
Cordella et al. 2000	The area under the ROC curve is
Multiple expert system	0.786 for 40 images.
Caldwell et al. 1990	Maximum area 0.86 under ROC.
Woods et al. 1993	Area under ROC curve 0.935 for 24 images.
Dhawan et al. 1996	Maximum area 0.76 under ROC for 191 images.
Kim and Park 1999 Neural Networks	The area under ROC curve is 0.88 for 120 images.
Woods et al. 1993	Area under ROC curve 0.929 for

Support Vector Machines(SVM)(dana cobzas et.al. 2004)	To predict sub cellular localization.
Multi-Layer Feed Forward Neural Network, Support Vector Machine(SVM)(corina drapaca 2005)	Used to classify the tumor regions from non-tumor regions.
Bayesian Model(Jason carso 2006)	Each region is assigned a most likely model class according to a set of learned model classes
3D-Expectation Maximization Method, Hidden Markov Model (Jeffrey soloman 2006)	To classify the tumor Region
Voxel Classification, Geometric Model(guido 2003)	To classify the tumor regions from non-tumor regions.
Multilayer preceptron neural network.(azadeh 2004)	To classify the tumor features extracted from the spectra.
Supervised voxal Classification. (guido2003)	The tumors classified successfully.
Support Vector Machines(SVMs),Decision Tree(DT) (gotsos 2003)	90.8% low from high grade tumors and 85.6% less from highly aggressive tumors are classified clearly. The ability of SVM to ensure good performance even with limited training samples was verified.
Quadratic Discriminant Analysis(QDA),Support Vector Machine(SVM) (hongmin 2007)	SVM classification is combined with QDA based classification to obtain a better tumor profile.
Linear Discriminant Analysis, Least Squares Support Vector Machines(LS-SVM),Linear Kernel Techniques (or) Radial Basis Function(devos 2005),(jain luts 2007)	Classifiers were evaluated over 100 stratified random splitting of the dataset into training and test sets.
Multi-Scale Jet -Based Classification(erick dam et.al.2004)	It is used to automatically select a subset of the regions generated by the watershed segmentation method.
Statistical Classification method(war field 2000)	Classify the tumor is benign, malignant or normal

VI. ROC ANALYSIS

The Receiver Operating Characteristics Curve (ROC) is a popular tool in Medical and Image processing research to analyze the rate of classification. ROC Analysis is based on statistical decision theory developed in the context of electronic signal detection and has been applied extensively to diagnostic systems in Clinical medicine. The ROC curve is a plot of the classifier's true positive detection rate and its false positive rate. True positive (TP) detection rate is the probability of correctly classifying a target object and false positive (FP) detection rate is the probability of incorrectly classifying a target object. The following figures show that the sample ROC curves. The Researchers suggested various techniques of ROC and they are available in the survey. Each classifier is constructed using the training set and is evaluated by ROC Analysis.

Methods	Description
Devos (2005)	Performance of ROC is 0.99 for 76
MRI with Peak	patients with 142 data's. It's
Integration	performed higher than other classifier.
Devos (2005) 29	Area Under Curve (AUC) higher than
Principal Component	0.94 for low versus high grade
Analysis(PCA) – LS	gliomas fro 70 data sets.
SVM	Higher result than PCA/LDA
Devos(2006) 29	Area Under Curve (AUC) higher than
Linear Discriminant	0.91 for low versus high grade tumors.
Analysis(LDA)	Performs better than PCA
Devos(2006)	Area Under Curve (AUC) higher than
Least Square-Support	0.91 for low versus high grade
Vector Machine	gliomas.Gives accurate result.
Devos(2006)	Area Under Curve (AUC) higher than
Least Square-Support	0.99 for gliomas versus meningiomas.
Vector Machine and	LS-SVM and RBF Combination gives
Radial Basis Function	better improvement than other
Kernal(RBF)	classifier.

Table 6.1 An overview of ROC Analysis

VII. CONCLUSIONS

In this survey work various automatic detection methods of microcalcifications and brain tumor through mammograms and MRI has been studied and compared for the period of more than two decades .This is used to focus on the future of developments of medical image processing in medicine and healthcare. We have described several methods in medical image processing and to discussed requirements and properties of techniques in tumor detection .This work is used to give more information about tumor detection and segmentation. It is a milestone for analyzing all technologies relevant to tumor from mammogram and MRI in Medical image processing. In this work, various steps in detection of automatic detection :i) The Preprocessing and Enhancement Technique ii) Segmentation Algorithm iii) Feature Extraction iv) Classification v)Performance Analysis using Receiver Operating Characteristics and their performance have been studied and compared.

REFERENCES

- Lai, S., Li, X. and Bischof, W.F. "On Techniques for Detecting Circumscribed Masses in Mammograms," IEEE Transactions on Medical Imaging, Vol. 8, No. 4, pp. 377–386, 1989.
- [2] Qian, W., Clarke, L.P., Kallergi, M. and Clark, R.A. "Tree-Structured Nonlinear Filters in Digital Mammography," IEEE Transactions on Medical Imaging, Vol. 12, No. 1, pp. 25–36, 1994.
- [3] Highnam, R.P., Brady, J.M. and Shepstone, B.J. "Computing the Scatter Component of Mammographic Images," IEEE Transactions on Medical Imaging, Vol. 13, No. 2, pp. 301–313, 1994.
- [4] Kim, J.K., Park, J.M., Song, K.S. and Park. W. "Adaptive Mammographic Image Enhancement Using First Derivative and Local Statistics," IEEE Transactions on Medical Imaging, Vol. 16, No. 5, pp. 495-502, 1997.

- [5] Li, H., Liu, K.J.R. and Lo, S.C.B. "Fractal modeling and segmentation for the enhancement of microcalcifications in digital mammograms," IEEE Transactions on Medical Imaging, Vol.16, No. 6, pp. 785–798, 1997.
- [6] Kovalerchuk, B., Traintaphyllou E.J.F. Ruiz and J. Clayton, J. "Fuzzy Logic in Computer-Aided Breast Cancer Diagnosis: Analysis of Lobulation," Artificial Intelligence in Medicine, Vol. 11, pp. 75–85, 1997.
- [7] Chang, R.F., Wu, W.J., Tseng, C.C., Chen, D.R. and Moon, W.K. "3-D Snake for US in Margin Evaluation for Malignant Breast Tumor Excision Using Mammotome," IEEE Transactions on Information Technology in Biomedicine, Vol. 7, no. 3, pp. 197–201, 2003.
- [8] Kobatake, H., Murakarni, M., Takeo, H. and Nawano, S. "Computerized Detection of Malignant Tumors on Digital Mammograms," IEEE Transactions on Information Technology in Biomedicine, Vol. 18, No. 5, pp. 369–378, 1999.
- [9] Ferrari, R.J., De Carvalho, F., Marques, P.M.A. and Frere. A.F. "Computerized classification of breast lesions: shape and texture analysis using an artificial neural network," 7th international conference on Image Processing and its applications, pp. 517–521, 1999.
- [10] Cordella, L.P., Tortorella, F. and Vento, M. "Combing experts with different features for classifying clustered microcalcifications in mammograms," Proceedings of 15th International Conference on Patten Recognition, pp. 324–327, 2000.
- [11] Bhangale, T., Desai, U.B. and Sharma, U. "An unsupervised scheme for detection of microcalcifications on mammograms," IEEE International Conference on Image Processing, pp. 184–187, 2000.
- [12] Enderwich, C.Y. and Tzanakou, E.M. "Classification of mammographic tissue using shape and texture features," Proceedings of the 19th International Conference-IEEE/EMBS, pp. 810–813, 1997.
- [13] Veldkamp, W.J.H. and Karssemeijer, N. "Normalization of local contrast in mammograms," IEEE Trans. Med. Imag., Vol. 19, No. 7, pp. 731–738, 2000.
- [14] Mudigonda, N.R., Rangayyan, R.M. and Desautels, L."Detection of Breast Masses in Mammograms by Density Slicing and Texture Flow Field Analysis," IEEE Tran. On Medical Imaging, Vol. 20, No. 12, pp. 1215–1227, 2001.
- [15] Rogova, G.L., Stomper, P.C. and Ke, C. "Microcalcification texture analysis in a hybrid system for computer aided mammography," SPIE, Vol. 3661, pp. 1426–1433, 1999.
- [16] Bocchi, L., Coppini, G., Nori, J. and Valli, G. "Detection of Single and Clustered Microcalcifications in Mammograms Using Fractals Models and Neural Networks," Medical Engineering and Physics, Vol.26, pp. 303 – 312, 2004
- [17] Olivier Clatz, Maxime Sermesant, Pierre-Yves Bondiau, Herve Delingette, Simon Warfield, K, Gregoire Malandain & Nicholas Ayache, 'Realistic Simulation of the 3-D Growth of Brain Tumors in MR Images Coupling Diffusion With Biomechanical Deformation', IEEE on Trans Medical Imaging,vol.24,no.10, pp.1334-1346. 2005
- [18] Dana Cobzas, Neil Birkbeck, Mark Schmidt & Martin Jagersand '3DVariational Brain Tumour Segmentation Using a High Dimensional Feature Set', IEEE 11th International Conference on Computer Vision, ICCV-2007, pp.1-8.2007
- [19] Jayaram Udupa, K, Vicki Lablane, R, Hilary Schmidt, Celina Lmielinska, Punam Saha, K, George, J, Grevera, Ying Zhuge, Pat Molholt, Yinpengjin & Leanne Currie, M, 'A Methodology for Evaluating Image Algorithm', IEEE on Medical Image Processing, pp.1-14. 2002
- [20] Elizabeth Bullitt, Donglin Zeng, Guido Gerig, Stephen Aylward, Sarang Joshi Keithsmith, J. Weili Lin, Matthew Ewend, G, 'Vessel Tortuosity and Brain Tumor Malingnancy:A Blinded Study', Academic Radiology, vol.12, pp.1232-1240.2005
- [21] Leung, CC, Chen, WF, Kwok, PCK & Chan, FHY 2003, 'Brain Tumor Boundary Detection in MR Image with Generalized Fuzzy Operator', International Conference on Image Processing Proceedings, Barcelona, vol.2, pp.1057-1060.2003
- [22] Zu Shan, Y, Jing Liu, Z & Guang Yue, H 2004, 'Automated Human Frontal lobe Identification in MR images based on Fuzzy-Logic Encoded Expert Anatomic Knowledge', Elsevier, Magnetic Resonce Imaging, Magnetic Resonance Imaging, vol.22, no.5, pp. 607-617.2004

- [23] Gray, HF 2010, 'Genetic Programming for the Analysis of Nuclear Magnetic Resonance Spectroscopy Data', The Institution of Electrical Engineers, Centre For Development of Advanced Computing, IEEE Xplore, March 10.2010
- [24] Mark Schmidt, Ilya Levner, Ressell Greiner, Albert Murtha & Aalo Bistritz 2005, 'Segmentation Brain Tumors using Alignment-Based Features', IEEE on Proceesings of the fourth International Conference on Machine Learning an Applications(ICMLA'05)", pp.215-220.2005
- [25] Toshiharu Nakai, Shigeru Muraki, Epifanio Bagarinao, Yukio Miki, Yasuo Takehara, Kayako Matsuo, Chikako kato, Harumi Sakahara & Haruo Isoda 2003, 'Application of independent component analysis to magnetic resonance Imaging for enhancing the contrast of gray and white matter', Elsevier on Neuroimage, vol.2, no.1, pp. 251-260.2003
- [26] Farahat, AS, El-Dewany, EM, El-Hefnawi, FM, Kadah, YM & Youssef, AA 2006, 'Calculations of Heating Patterns of Interstitial Antenna for Brain Tumors Hyperthermia Treatment Planning', The 23thNational Radio Science Conference, Faculty of Electronic Engineering, Menoufiya University.2006
- [27] Kyeong-Jun Mun, Hyeon Tae Kang, Hwa-Seok Lee, Yoo-Sool Yoon, Chang-Moon Lee & June Ho Park 2004, 'Active Contour Model Based Object Contour Detection using Genetic Algorithm with Wavelet Based Image Preprocessing', International Journal of Control, Automation, and Systems vol. 2, no. 1.2004
- [28] Lim, LO & Pfefferbaum, A 1989, 'Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter', Journal of Comput. Assisted Tomog, vol .13, no. 4, pp. 588-593.1989
- [29] Chunyan Jiang, Xinhua Zhang, Wanjun Huang & Christoph Meinel 2004, 'Segmentation and Quantification of Brain Tumor', IEEE International conference on Virtual Environment, Human-Computer interfaces and Measurement Systems, pp.12-14.2004
- [30] Tsai, C, Manjunath, BS & Jagadeesan, R 1995, 'Automated Segmentation of brain MR Images', Pergamon, Pattern Recognition, vol.28, no.12.1995
- [31] Boada, FE, Davis, D, Walter, K, Torres-Trejo, A, Kondziolka, D, Bartynski, W & Lieberman, F 2004, 'Triple Quantum Filtered Sodium MRI of Primary Brain Tumors', IEEE, Proc. Intl. Soc. Mag. Reson. Med.USA.2004
- [32] Aria Tzika, A, Maria Zarifi, K, Liliana Goumnerova, Loukas Astrakas, G David Zurakowski, Tina Young- Poussaint, Douglas Anthony, Michael Scott, R & Peter McL. Black 2002, 'Neuroimaging in Pediatric BrainTumors:Gd-DTPA-Enhanced, emodynamic, and Diffusion MR Imaging Compared with MRSpectroscopic Imaging', AJNR Am J Neuroradiol ,vol.23, no 2, pp .322-333.2002
- [33] Amini, L, Soltanian-Zadeh, H & Lucas, C 2003, 'Automated Segmentation of Brain Structure from MRI', Proc. Intl.Soc. Mag. Reson.Med.11.2003
- [34] Zhe chen, David Dagan Feng & Weidong Cai 2003, 'Automatic Detection of PET Lesions', Pang-Sydney Area Workshop on Visual Information Processing, Conference in Research and Practice in IT, vol.22, pp.21-26.2003
- [35] Corina Drapaca, S, Valerie Cardenas & Colin Studholme 2005, 'Segmentation of tissue boundary evolution from brain MR Image sequences usingmulti-phaselevel sets', Elsevier, Computer vision and image understanding, vol. 100, no. 3, pp.312-329.2005
- [36] Dimitris Metaxas, N, Zhen Qian, Xiaolei Huang, Rui Huang, Ting Chen & Leon Axal, 'Hybrid Deformable Models for Medical Segmentation and Registration', International conference on Control, Automation, Robotics and Vision(ICARCV'06),pp.1-6. 2006
- [37] Hideki yamamoto, Katsuhiko Sugita, Noriki Kanzaki, Ikuo Johja, Yoshio Hiraki & Michiyoshi Kuwahara 1990, 'Magnetic Resonance Image Enhancement Using V- Filter', IEEE AES Magazine, vol.5, no.6, pp. 31 - 35.1990
- [38] Gordon Kindlmann & Carl-Fredrik Westin 2006, 'Diffusion Tensor Visualization with Glyph Packing', IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/ Information Visualization 2006) vol.12, no.5, pp.1329-1335.2006
- [39] Shishir Dube, Suzie El-saden, Timothy Cloughesy, F & Usha Sinha 2006, 'Content Based Image Retrieval for MR image Studies of Brain Tumors', Proceedings of the 28th IEEE EMBS Annual International Conference, NewYork,vol.1,no.1,pp.3337-3340.2006

- [41] Sean Haney, M, Paul Thompson, M, Timothy Cloughesy, F, Jeffry Alger, R & Arthur Toga, W 2001, 'Tracking tumor Growth Rates in Patients with Malignant Gliomas', A Test of two Algorithms', American Society of Neuroradiology, AJNR Am J euroradiol,vol.22, no.1, pp. 73-82.2001
- [42] Michael Wood, L & Val Runge, M 1988, 'Application of image Enhancement technique to Magnetic Resonance Imaging', Radiographics,vol.8, no. 4,pp. 771-784.1988
- [43] Sonali Patil & Udupi, VR 2012, 'Preprocessing to be considered for MR and CT images containing Tumors', IOSR journal of Electrical and Electronics Engineering, vol. 1, no. 4, pp. 54-57.2012
- [44] Dengler, J., Behrens, S., and Desaga, J.F. "Segmentation of microcalcifications in mammograms," IEEE Transactions on Med. Imag., Vol. 12, no. 4, pp. 634–642, 1993.
- [45] Li, H.D., Kallergi, M., Clarke, L.P., Jain, V.K., and Clark, R.A. "Markov Random Field for Tumor Detection in Digital Mammography," IEEE Transactions on Medical Imaging, Vol. 14, No. 3, pp. 565 – 576, 1995.
- [46] Li, H., Liu, K.J.R. and Lo, S.C.B. "Fractal modeling of mammogram and enhancement of microcalcifications," IEEE Nuclear Science Symposium & Medical Imaging Conference, Vol. 3, pp. 1850–1854, 1996.
- [47] Kim, J.K., Park, J.M., Song, K.S. and Park. W. Detection of clustered microcalcifications on mammograms using surrounding region dependence method and artificial neural network," Journal on VLSI Signal Process, Vol. 18, pp. 251–262, 1998.
- [48] Mossi, J.M., Albiol, A. "Improving detection of clustered microcalcifications using morphological connected operators," IEEE Image Proces. and its Applications, Vol. 5, No. 2, pp. 498– 501, 1999.
- [49] Peters, J.F. and Skowron, A. (Eds.). "Transactions on Rough Sets," Springer-Verlag, Berlin, 2004.
- [50] Cheng, H.D., Cai, X., Chen, X.W., Hu, L. and Lou, X. "Computer Aided Detection and Classification of Microcalcifications in Mammograms: A Survey," Pattern Recognition, Vol. 36, pp. 2967–2991, 2003.
- [51] Cheng, H.D., Chen, J.R., Freimanis, R.I. and Jiang, X.H."A novel fuzzy logic approach to microcalcification detection," Journal on Inform. Sci., Vol. 7, pp. 1-14, 1998.
- [52] Cheng, H.D., Lui, Y.M. and Freimanis, R.I. "A novel approach to microcalcification detection using fuzzy logic technique," IEEE Trans. Med. Imag. Vol. 17, no. 3, pp. 442–450, 1998.
- [53] Cheng, H.D., Wang, J. and Shi, X. "Microcalcification Detection Using Fuzzy Logic and Scale Space Approaches," Pattern Recognition, Vol. 37, pp. 363–375, 2004.
- [54] Dippel, S., Stahl, M., Wiemker, R. and Blaffert, T. "Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform," IEEE Trans. Med. Imag., Vol. 21, No. 4, pp. 343–353, 2002.
- [55] Pandey, N., Salcic, Z. and Sivaswamy, J. "Fuzzy logic based microcalcification detection, Neural Networks for Signal Processing," Proceedings of the IEEE Workshop, pp. 662–671, 2000.
- [56] Valverde, F.L., Guil, N. and Munoz, J. "Segmentation of Vessels from Mammograms Using a Deformable Model," Computer Methods and Programs in Biomedicine, Vol.73, pp. 233–247, 2004.
- [57] Phillips, WE, Velthuizen, RP, Phuphanich, S, Hall, LO, Clarke, LP & Silbiger ML 1995, 'Application of Fuzzy C-Means Segmentation Technique for tissue Differentlation in MR Images of a hemorrhagic Glioblastoma Multiforme', Pergamon on Megnetic Resonance Imaging,vol.13,pp. 277-290.1995
- [58] Vaidyanathan, M, Clarke, LP, Hall, LO, Heidtman, C, Velthuizen, R, Gosch, K, Phuphanich, S, Wagner, H, Greenberg, H & Silbiger, ML 1997, 'Monitoring brain tumor Response to therapy using MRI segmentation', Elsevier on Magnetic Resonance Image, vol.15, no.3, pp.323-334.1997
- [59] James Lin, C, Shinji hirai, Chin-Lin Chiang, Wen-Lin Hsu, Jenn-Lung Su, & Yu-Jin Wang 2000, 'Computer Simulation and Experimental Studies of SAR Distributions of Interstitial Arrays of Sleeved-Slot Microwave Antennas for Hyperthermia treatment of

Brain Tumors', IEEE Transactionson Microwavetheory and Techniques, vol.48, no.11, pp. 2191-2198.2000

- [60] Kannan, SR 2005, 'A New Clustering Algorithm for Segmentation of Magnetic Resonance Images Using Fuzzy C-Mean and Computer Programming', ICGST International Journal on Graphics, Vision and Image Processing, vol.2. 2005
- [61] Kannan, SR 2005, 'Segmentation of MRI Using New Unsupervised Fuzzy C mean Algorithm', ICGST-GVIP Journal, vol.5, no.2.2005
- [62] Jeffrey Solomon, John Butman, A & Arun Sood 2006, 'Segmentation of brain tumors in 4D MR images using the Hidden Markov model', Elsevier on Computer Methods and Programs in Biomedicine'', USA, vol.84, no.2, pp. 76-85.2006
- [63] Jeffrey Solomon, A, Butman & Arun Sood 2004, 'Data Driven Brain Tumor Segmentation in MRI Using Probabilistic Reasoning over Space and Time', Springer Link on Medical Image Computing, vol. 3216.2004
- [64] Shan Shen, William Sandham, Malcolm Granet & Annette Sterr 2005, 'MRI Fuzzy Segmentation of Brain Tissue Using Neighbourhood Attraction with Neural- Network Optimization' IEEE Transactions on Information Technology in Biomedicine, vol.9, no.3, pp. 459-467.2005
- [65] Benedicte Mortamet, Donglin Zeng, Guido Gerig, Marcel Prastawa & Elizabeth Bullitt 2005, 'Effects of Healthy Aging Measured By Intracranial Compartment Volumes using Designed MR Brain Database', Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, vol.8, pp. 383-391. 2005
- [66] Marcel Prastawa, Elizabeth Bullitt & Guido Gerig 2009, 'Simulation of Brain Tumors in MR Images for Evaluation of Segmentation Efficacy', Medical Image Analysis (MedIA), vol .13, no. 2, pp. 297-311.2009
- [67] Marcel Prastawa, Elizabeth Bullitt, Nathan Moon, Koen van Leemput & Guido Gerig, 2003, 'Automatic Brain Tumor Segmentation by Subject Specific Modification of Atlas Priors', Academic Radiology. vol .10, no.12, pp. 1341-1348.2003
- [68] Marcel Prastawa, Elizabeth Bullitt, Sean Ho & Guido Gerig 2003, 'Robust Estimation for Brain Tumor Segmentation', Medical Image Computing and Computer Assisted Intervention (MICCAI), Lecture Notes in Computer Science (LNCS), vol.2879, pp.530-537.2003
- [69] Marcel Prastawa, Elizabeth Bullitt, Sean Ho & Guido Gerig 2004, 'A Brain Tumor Segmentation Framework Based on Outlier Detection' Medical Image Analysis, vol. 8, no.3, pp.275-283.2004
- [70] Marcel Prastawa, W, John Gilmore, H, Weili Lin, Christopher Looney, BY, Sampath Vetsa, K, Rebecca Knickmeyer, C, Dianne Evans, D, Keith Smith, J, Robert Hamer, M, Jeffrey Lieberman, A & Guido Gerig 2007, 'Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain', Journal of Neuroscience. vol.27, no. 6, pp.1255-1260.2007
- [71] Jing-hao Xue, Su Ruan, Bruno Moretti, Marinette Revenu & Daniel Bloyet 2001, 'Knowledge-based Segmentation And Labeling of brain structure fromMRI images', Elsevier on Pattern Recognition Letters, vol.22, no. 3-4,pp. 395-405. 2001
- [72] Siyal, MY & Lin, YU, 2005, An Intelligent modified fuzzy Cmeans based algorithm for bias estimation and Segmentation of brain MRI", Elsevier, Pattern Recognition Letters, vol.26,no.13,pp. 2052-2062.2005
- [73] Amanpreet Kaur & Singh, MD 2012, 'An Overview of PSO- Based Approaches in Image Segmentation', International Journal of Engineering and Technology, vol.2, no. 8.2012
- [74] Angel Viji, KS & Jayakumari, J 2012, 'Performance Evaluation of Standard Image Segmentation Methods and Clustering Algorithms for Segmentation of MRI Brain Tumor Images', European Journal of Scientific Research, vol. 79, no.2, pp. 166-179.2012
- [75] Jason Carso 2006, Multilevel Image Segmentation and Integrated Bayesian Model Classification with an Application to Brain Tumor Imaging', Upcoming UCLA Statistics Seminar on Springer link, vol. 4191, pp. 790-798.2006
- [76] Michael Jacobs, A, Panayiotis Mitsias, Hamid Soltanian-Zadeh, Sunitha Santhakumar, Amir Ghanei, Rabih Hammond, Donald Peck, J, Michael Chopp & Suresh Patel 2001, 'Multiparametric MRI Tissue Characterization in Clinical Stroke with Correlation to Clinical Outcome', American Heart Association, Stroke, pp.950-957.2001
- [77] Nathan Moon, Elizabeth Bullitt, Koen Van Leemput & Guido Gerig 2002, 'Automatic Brain and Tumor Segmentation', Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention-Part I, pp. 372-379. 2002

- [78] Vaidyanathan, M, Clarke, LP, Velthuizen, RP, Phuphanich, S, Bensaid AM, Hall, LO, Bezdek, JC, Greenberg, H, Trotti A & Silbiger, M 1995, 'Comparison of Supervised MRI Segmentation methods for Tumor Volume Determination During Therapy', Pergamon,Magnetic Resonance Imaging, Magnetic Resonance Imaging, vol.13, no.5, pp.719-728.1995
- [79] Xie, K, Yang, J, Zhang, ZG & Zhu, YM 2005, 'Semiautomated Brain tumor and edema segmentation using MRI', European Journal of Radiology, vol.56, no.1, pp.12-19.2005
- [80] Weibei Dou, Su Ruan, Yanping Chen, Daniel Bloyet & Jean-Marc Constans 2007, 'A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images', Image and Vision Computing, vol.25, no.2, pp. 164-171.2007
- [81] MAO Yong, ZHOU Xiao-bo, PI Dao-ying, SUN Youxian & WONG Stephen TC 2005, 'Parameters selection in selection using Gaussian kernel support vector machines by genetic algorithm', Journal of Zhejiang University Science, vol. 6, no.10, pp.961– 973.2005
- [82] Robert Velthuizen, P, Lawrence Hall, Laurence Clarke, P & Martin Silbiger, L 1997, 'An Investigation of Mountain Method Clustering for Large Data Sets', Peron, Pattern Recognition, vol.30, no.7, pp. 1121-1135.1997
- [83] Jayaram Udupa, K & Punam Saha, K. 2003, 'Fuzzy Connectedness and Image Segmentation', Proceedings of the IEEE,vol.91,no.10, pp.1649-1669.2003
- [84] Kabir, Y, Dojat, M, Scherrer, B, Forbes, F & Garbay, C 2007, 'Multimodal MRI Segmentation of ischemic stroke Lesions', 29th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, pp.1595-1598. 2007
- [85] Pierre-Yves Bondiau, Gregoire Malandain, Stephane Chanalet & Pierre-Yves Marcy 2005, 'Atlas-Based Automatic Segmentation of MR Images: Validation Study on The Brainstem in Radiotherapy Context', Elsevier on radiation Oncology Biological Physis, vol. 6, no.1, pp.289-298.2005
- [86] Xin Bai, Jesse Jin, S & Dagan Feng 2004, 'Segmentation Based Multilayer Diagnosis Lossless Medical Image Compression', Australian Computer Society, Pan Sydney Area Workshop on Visual Information Processing (VIP 2003), vol. 100,pp.9-14.2003
- [87] Ming-Ni Wu, Chia-Chen Lin & Chin-Chen Chang 2007, 'Brain Tumor Detection Using Color-Based k- Means Clustering Segmentation', Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, vol. 2, pp.245-250. 2007
- [88] Panos kotsas 2005, 'Non-rigid Registration of medical images using an Automated method', World academy of science, Engineering and Technology .2005
- [89] Erik Dam, Marcoloog & Marloes Letteboer 2004, 'Integrating Automatic and Interactive Brain tumor Segmentation' Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04),vol. 3,pp.790-793.2004
- [90] Chan, FHY, Lam, FK, Poon, PWF, Zhu, H & Chan, KH 1996, 'Object boundary location by Region and Contour Deformation', IEEE, Proceedings on Vision, Image and Signal Processing, vol.143, no.6, pp.353-360.1996
- [91] Bricq, S, Collet, Ch & Armspach, JP 2008, 'Unifying Framework for Multimodal brain MRI Segmentation based on Hidden Markov Chains', Elsevier on Medical Image Analysis, vol.12, no. 6, pp. 639-652.2008
- [92] Kai Xie, Jie Yang, Zhang, ZG, & Zhu, YM 2005, 'Semiautomated brain tumor and edema Segmentation using MRI', Elsevier, European journal of Radiology, vol .56, no. 1, pp. 12-19.2005
- [93] David Gering, Eric, W, Grimson, L & Kikinis, R 2002, 'Recognition Deviations from Normalcy for Braintumor Segmentation', Springer, vol.2488, pp.388-395.2002
- [94] Aaron Lefohn, Joshua Cates & Ross Whitaker, 2003, 'Interactive GPU-Based level sets for 3D Brain Tumor Segmentation'.2003
- [95] Zhou, J, Chan, KL, Chong, VFH & Krishnan, SM 2005, 'Extraction of Brain Tumor from MR Images Using One- Class Support Vector Machine', Proceedings of the 2005 IEEE Engineering in Machine and Biology ,27th Annual Conference, pp.6411-6414.2005
- [96] Karnan, M & Selvanayaki, K 2010, 'Improved Implementation of Brain MR Image Segmentation using Meta Heuristic Algorithms', IEEE International Conference on Computational Intelligence and Computing Research,pp.28-29.
- [97] Xu-Lei Yang, Qing Song, Yue Wang, Ai-Ze Cao & Yi-Lei Wu 2008, 'A Modified Deterministic Annealing Algorithm for Robust

Image Segmentation', Journal of Mathematical Imaging and Vision, vol.30, no. 3, pp.308 - 324.2008

- [98] Albert Law, KW, Law, FK, Francis Chan, HY 2002, 'A Fast Deformable Region Model for Brain Tumor Boundary Extraction', Engineering in Medicine and Biology', Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society (EMBS/BMES) Conference, vol.2, pp.1055-1056.2002
- [99] Azadeh Yazdan Shahmorad, Hamid Soltanianzadeh & Reza Zoroofi, A 2004, 'MRSI– Braintumor characterization using Wavelet and Wavelet packets Feature spaces and Artificial Neural Networks', Engineering in Medicine and Biology Society, 26th Annual International Conference of the IEEE, vol.1, no.1-5 pp.1810-1813.2004
- [100] Xiangyang Wang, Jie Yang, Richard Jensen & Xiaojun Liu 2006, Rough set feature selection and rule induction for Prediction of malignancy degree in brain glioma', Elsevier on Computer Methods and Programs in Biomedicine, vol.83,no.2,pp. 147-156.2006
- [101] Jan Luts, Arend Heerschap, Johan Suykens, AK & Sabine Van Huffel 2007, 'A Combined MRI and MRSI based Multiclass System for brain tumor recognition using LS-SVMs with class probabilities and feature selection', Elsevier, Artificial Intelligence in Medicine, vol.40, no. 2, pp. 87-102.2007
- [102] Woods, K., Doss, C., Bowyer, K., Clarke. L. and Clark, R. "A neural network approach to microcalcification detection," IEEE 1992 Nuclear Science Symposium and Medical Imaging Conference, Orlando, FL, pp. 1273–1275, 1992.
- [103] Woods, K.S., Doss, C.C., Bowyer, K.W., Sulk, J.L., Probe, C.E., and Kegelmeyer, W.P. "Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography," International journal on Pattern Recognition and Artificial Intelligence, Vol. 7, pp. 1417–1436, 1993.
- [104] Caldwell, C.B., Stapleton S.J. Holsworth. and Jong, R.A. "Characterization of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol., Vol. 35, No. 2, pp. 235–247, 1990.
- [105] Nishikawa, R.M., Giger, M.L., Dio, K., Vyborny, C.J. and Schmidt, R. A. "Computed-aided detection of clustered microcalcifications: An improved method for grouping detected signals," Med. Phys., Vol. 20, no. 6, pp. 1661–1666, 1993.
- [106] Nishikawa, R.M., Giger, M.L., Dol, K., Vyborny, C.J. and Schmidt, R. A. "Computer-aided detection of clustered microcalcifications on digital mammograms," Med. Biol. Eng. Computer, Vol. 33, No. 2, pp. 174–178, 1995.
- [107] Nishikawa, R.M., Jiang, Y., Giger, M.L., Doi, K., Vyborny, C.J., and Schmidt, R.A. "Computer-aided detection of clustered microcalcifications," Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1375–1378, 1992.
- [108] Nishikawa, R.M., Jiang, Y., Giger, M.L., Vyborny, C.J., Schmidt, R.A. and Bick, R. "Characterization of the mammographic appearance of microcalcifications: applications in computer-aided diagnosis," SPIE Image Process, Vol. 1898, pp. 422–429, 1993.
- [109] Dhawan, A.P., Chitre, Y., Bonasso, C. and Moskowita, M. "Analysis of mammographic microcalcifications using grey-level image structure features," IEEE Trans. Med. Imag., Vol. 15, No. 3, pp. 246–259, 1996.
- [110] Guido Gerig, Marcel Prastawa, Wili Lin & John Gilmore 2004, 'Assessing Early Brain Development in Neonates by Segmentation of High-Resolution 3T MRI', vol. 2879, pp. 979-980, MICCAI.2004
- [111] Glotsos, D, Spyridonos, P, Petalas, P, Cavouras, D, Zolota, V, Dadioti, P, Lekka, I & Nikiforidis, G 2003, 'A Hierarchical Decision tree classification scheme for brain tumor astrocytoma grading using Support Vector Machines', Proceedings of the 3rd international Symposium on Image and Signal Processing and Analysis.
- [112] Hongmin Cai, Ragini Verma, Yangming Ou, Seungkoolee, Elias Melhem, R , & Christos Davatzaikos 2007, Probabilistic Segmentation of brain tumors Based on Multi-Modality Magnetic Resonance Images', IEEE International Symposium on Biomedical Imaging (ISBI).2007
- [113] Devos, A, Simonetti, AWV, Graaf, M, Lukas, L, Suykens, JAK, Vanhamme, L, Buydens, LMC, Heerschap, A & Van Huffel, S 2005, 'The use of multivariate MR imaging intensities versus metabolic data from MR classification', Elsevier Journal of Magnetic Resonance, vol.173, no. 2, pp.218-228.2005

- [114] Warfield, SK, Michael Kaus, Ferenc Jolesz, A & Ron Kikinis 2000, 'Adaptive, template moderated, spatially varying statistical classification', Science Direct on Medical Image Analysis, vol. 2, no.1, pp. 43-55.2000
- [115] Devos, A, Lukas, L, Simonetti, AW, Suykens, JAK, Vanhamme, L, van der Graaf, M, Buydens, LMC, Heerschap, A & Van Huffel, S 2004, 'Does the combination of Magnetic Resonance Imaging and Spectroscopic Imaging improves the classification of brain tumours', Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 407-10.2004
- [116] K Thangavel, M Karnan, R Sivakumar, AK Mohideen, "Automatic detection of microcalcification in mammograms-a review", International Journal on Graphics, Vision and Image Processing, 5 (5), 31-61 2005
- [117] K Thangavel, M Karnan, A Pethalakshmi, "Performance analysis of rough reduct algorithms in mammogram", International Journal on Global Vision and Image Processing 5 (8), 13-21, 2005
- [118] K Thangavel, M Karnan, R.SivaKumar, AK Mohideen, "Segmentation and classification of microcalcification in mammograms using the ant colony system", International Journal on Artificial Intelligence and Machine Learning, 5 (3), 29-40, 2005.
- [119] K Thangavel, M Karnan, P Jeganathan, A Petha Lakshmi, R Sivakumar, G Geetharamani, "Ant colony algorithms in diverse combinational optimization problems-a survey", International Journal on Automatic Control and System Engineering 6 (1), 7-26, 2006
- [120] K Thangavel, P Jaganathan, A Pethalakshmi, M Karnan, "Effective classification with improved quick reduct for medical database using rough system", BIME Journal 5 (1), 7-14, 2005
- [121] M Karnan, K Thangavel, "Automatic detection of the breast border and nipple position on digital mammograms using genetic algorithm for asymmetry approach to detection of microcalcifications", Computer methods and programs in biomedicine 87 (1), 12-20, 2007
- [122] K Thangavel, M Karnan, "CAD system for Preprocessing and Enhancement of Digital Mammograms", International Journal on Graphics Vision and Image Processing 5 (9), 69-74, 2005
- [123] K Thangavel, M Karnan, "Computer aided diagnosis in digital mammograms: detection of microcalcifications by meta heuristic algorithms", GVIP Journal 5 (7), 41-55, 2005
- [124] K Thangavel, M Karnan, "Automatic Detection of Asymmetries in Mammograms Using Genetic Algorithm International Journal on Artificial Intelligence and Machine Learning 5 (3), 55-62, 2005
- [125] T Logeswari, M Karnan, "An Improved Implementation of Brain Tumor Detection Using Segmentation Based on Hierarchical Self Organizing Map", International Journal of Computer Theory and Engineering, 2 (4), 1793-8201, 2010
- [126] T Logeswari, M Karnan, "An improved implementation of brain tumor detection using segmentation based on soft computing", Journal of Cancer Research and Experimental Oncology 2 (1), 006-014, 2010
- [127] J Jaya, K Thanushkodi, M Karnan, "Tracking algorithm for denoising of MR brain images", International Journal of Computer Science and Network Security 9 (11), 262-267, 2009
- [128] P Jaganathan, K Thangavel, A Pethalakshmi, M Karnan, "Classification rule discovery with ant colony optimization and improved Quick Reduct algorithm" IAENG International Journal of Computer Science 33 (1), 50-55, 2007
- [129] M Karnan, R Sivakumar, M Almelumangai, K Selvanayagi, T Logeswari, "Hybrid Particle Swarm Optimization for Automatically Detect the Breast Border and Nipple position to Identify the Suspicious Regions on Digital Mammograms Based on Asymmetries", International Journal of Soft Computing 3 (3), 220-223, 2008
- [130] E.Ben George, M Karnan, "MRI Brain Image Enhancement Using Filtering Techniques", International Journal of Computer Science & Engineering Technology, Vol. 3 No. 9, 399-403, 2012
- [131] E.Ben George, M Karnan, "Feature Extraction and Classification of Brain Tumor using Bacteria Foraging Optimization Algorithm and Back Propagation Neural Networks", European Journal of Scientific Research, 88 (3), 327-333 2012
- [132] EB George, M Karnan, "MR Brain Image Segmentation using Bacteria Foraging Optimization Algorithm", International Journal of Engineering and Technology 4 2012

- [133] P Kalyani, M Karnan, "Attribute Reduction using Forward Selection and Relative Reduct Algorithm", International Journal of Computer Applications 11 (3) 8–12, 2010
- [134] Mary Jeyanthi Prem, M Karnan, "Business Intelligence: Optimization techniques for Decision Making", International Journal of Engineering 2 (8) 1081-1092, 2013
- [135] J.Subash Chandra Bose, KRS Kumar, M Karnan, "Detection of Microcalcification in Mammograms using Soft Computing Techniques", European Journal of Scientific Research 86 (1), 103-122, 2012
- [136] K.Rajiv Gandhi, SM Uma, M Karnan, "A Hybrid Meta Heuristic Algorithm for Discovering Classification Rule in Data Mining", IJCSNS 12 (4), 116 2012
- [137] R Sivakumar, M Karnan, "A Novel Evolutionary Approach to Detect Microcalcifications in Mammogram Image", International Journal of Computer Applications 39 (17), 31-34, 2012.
- [138] R Sivakumar, M Karnan, GG Deepa, "An Improved Modified Tracking Algorithm Hybrid with Fuzzy C Means Clustering In Digital Mammograms", International Journal of Computer Technology and Applications 3 (2) 2012

- [139] R Sivakumar, M Karnan, "Detection of Masses in Mammogram Image using Enhanced Artificial Bee Colony Optimization Algorithm", European Journal of Scientific Research, 88 (1), 89-98, 2012.
- [140] R Sivakumar, M Karnan, "Diagnose Breast Cancer through Mammograms Using EABCO Algorithm", International Journal of Engineering and Technology 4 2012
- [141] V.Joseph Peter, M Karnan, "Medical Image Analysis Using Unsupervised and Supervised Classification Techniques, "International Journal of Innovative Technology and Exploring Engineering, Vol 3, Iss 5, Pp 40-45 (2013)
- [142] Neeraja R Menon, M Karnan, R Sivakumar, Brain Tumor Segmentation In MRI Image Using Unsupervised Artificial Bee Colony And FCM Clustering International Journal of Computer Science and Management Research, Vol 2 Issue 5, 2450-2454, May 2013
- [143] A Sivaramakrishnan, M Karnan, "A Novel Based Approach for Extraction of Brain Tumor in MRI Images Using Soft Computing Techniques", Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, Issue 4, 1845-1848, April 2013