

String Matching Methodologies:A Comparative
Analysis

Akhtar Rasool,Amrita Tiwari, Gunjan Singla,Nilay Khare

Department of computer Science & Engg.
Maulana Azad National Institute of Technology

Bhopal-462051, India.

Abstract- String matching is the problem of finding all
occurrences of a character pattern in a text. This paper
provides an overview of different string matching
algorithms and comparative study of these algorithms. In
this paper, we have evaluated several algorithms, such as
Naive string matching algorithm, Brute Force algorithm,
Rabin-Karp algorithm, Boyer-Moore algorithm, Knuth-
Morris-Pratt algorithm, Aho-Corasick Algorithm and
Commentz Walter algorithm. We analysed the core ideas
of these single pattern string matching algorithms and
multi-pattern string matching algorithms.We compared
the matching efficiencies of these algorithms by searching
speed, pre-processing time, matching time and the key
ideas used in these algorithms. It is observed that
performance of string matching algorithm is based on
selection of algorithms used and also on network
bandwidth.

Keyword- String matching, Naive Search, Rabin Karp,
Boyer-Moore, KMP, Exact String Matching, Approximate
String Matching, Comparison of String Matching
Algorithms.

I.INTRODUCTION
String matching is a technique to find out pattern from
given text. Let ∑ be an alphabet. Elements of ∑ are
called symbols or characters. For example, if ∑ = {a,
b}, then abab is a string over ∑. The pattern is denoted
by P [1....m]. The text is denoted by T [1...n]. If P
occurs with shift s in T, then we call s a valid shift;
otherwise, we call s an invalid shift. The string
matching problem is the problem of finding all valid
shifts with which a given pattern P occurs in a given
text T [1]. Figure 1 shows this definition [2].

Figure 1: String Matching Example

II.EXACT STRING MATCHING ALGORITHMS

Exact string matching is used in search of any
occurrence of a string A in string B. These algorithms
are applied in biology, and especially in the segment
concerning DNA chains [5]. Much of data processing in
bioinformatics involves in one way or another
recognising certain patterns within DNA, RNA or
protein sequences.

A. Single pattern string matching algorithms
1) Naive string matching algorithm: It is also known as
Brute Force algorithm. It has no pre-processing phase,
needs constant extra space. It always shifts the window
by exactly one position to the right. It requires 2n
expected text characters comparisons. It finds all valid
shifts using a loop that checks the condition
P[1....m]=T[s+1........s+m] for each of the n-m+1
possible values of s .
 Consider the following example.
T=ANPANMAN
P=MAN
ANPANMAN
 A brute force method for string matching algorithm is
shown in Figure 2:

Figure 2: Naive String Matching Example

 Naive string matching algorithm takes time O((n-
m+1)m), and this bound is tight in the worst case. The
worst case running time is thus O((n-m+1)m)[4]. The
running time of Naive String Matching algorithm is
equal to its matching time, since there is no pre-
processing.

2) Rabin Karp String Matching Algorithm: This
algorithm uses hashing function. It works in two phases
i.e. pre-processing phase (time complexity
Θ(m)),matching phase(time complexity average Θ
(n+m),worst Θ((n-m+1) m)).[4]
 Rabin Karp matcher is used to find a numeric pattern
P from a given text T. It firstly divides the pattern with a
predefined prime number q to calculate the remainder of
pattern P. Then it takes the first m characters from text
T at first shift s to compute remainder of m characters
from text T. If the remainder of the pattern P and
remainder of the text T are equal, only then we compare
the text with pattern otherwise there is no need for
comparison. We will repeat the process for next set of
characters from text for all possible shifts which are
from s=0 to n-m. So, according to this, two numbers n1

Akhtar Rasool Amrita Tiwari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3394 - 3397

3394

and n2 can only be equal if REM (n1/q) = REM(n2/q)
.[1]
After division, there are three cases:-

TABLE I: CASES

Ex- For a given text T, pattern P and prime number q
T=234567899797797976534356678886756456890975
54534343424545475655454
P= 667888
q=11
REM(Text) = 234567/11 =3
REM(P) = 667888/11 =1
REM(Text) ≠ REM(P)
Now move on to next set of characters from text and
repeat the procedure.

3) Boyer-Moore String Matching Algorithm: The Boyer-
Moore algorithm (BM) was developed by R.S.Boyer
and J.C.Moore in 1977[11].The BM algorithm scans the
characters of the pattern from right to left beginning
with the rightmost one and performs the comparisons
from right to left. In case of a mismatch (or a complete
match of the whole pattern) it uses two pre-computed
functions to shift the window to the right. These two
shift functions are called the good-suffix shift (also
called matching shift) and the bad-character shift (also
called the occurrence shift).It works in two phases: Pre-
processing phase in O(m+│∑│) time complexity,
Matching phase in Ω(n/m), O(n) time complexity[4].
There are 3n text character comparisons in the worst
case when searching for a non periodic pattern. [3]
Assume that a mismatch occurs between the character
P[i]=b of the pattern and the character T[i+j]=a of the
text during an attempt at position j. Then, P[i+1 .. m-
1]=T[i+j+1 .. j+m-1]=u and P[i]≠T[i+j]. The good-
suffix shift consists in aligning the segment T[i+j+1 ..
j+m 1]=P[i+1 .. m-1] with its rightmost occurrence in
P that is preceded by a character different from P[i].
BM algorithm will carry through shift computing as
follows:
Good-suffix function: The algorithm looks up string u
leader character is not b in P from right to left. If there
exists such segment, shift right P to get a new attempt
window. If there exists no such segment, the shift
consists in aligning the longest suffix v of T[i+j+1 ..
j+m- 1] with a matching prefix of P.
Bad-char function: The bad-character shift consists in
aligning the text character T[i+j] with its rightmost
occurrence in P[0 .. m-2]. If T[i+j] does not occur in the
pattern P, no occurrence of P in T can include T[i+j],
and the left end of the window is aligned with the
character immediately after T[i+j], namely T[i+j+1].

Figure 3: Boyer Moore String Example

BM algorithm uses above-mentioned good-suffix
function and bad-char function to calculate the new
comparing position shifting rightward P. Practice shows
that BM Algorithm is fast in the case of larger alphabet.
[3]
Scalpel [7] uses the Boyer-Moore single pattern search
algorithm. The open-source file carver Scalpel searches
for all occurrences of headers and footers from a
dictionary of about 40 header- footer pairs in disks that
are many gigabytes in size. [8]

4) Knuth-Morris-Pratt String Matching Algorithm: The
Knuth-Morris-Pratt Algorithm (KMP) was developed
by D.Knuth, J.Morris and V.Pratt in 1974. It compares
the pattern with the text from left to right. In case of a
mismatch or whole match it uses the notion border of
the string. It decreases the time of searching compared
to the Brute Force algorithm. [11]
 KMP algorithm uses automata to find all the
occurrences of a pattern in a text. The automata
comprises of three parts (Figure 4):
Node: the prefixes of the pattern.
Success Link: link from the prefix node P[0 .. i-1] to the
prefix node P[0 .. i]. When matching successfully, we
use Success Link linking to the next state.
Failure Link: link from the prefix node P[0 .. i-1] to the
prefix node P[0 .. j-1](j<i), which is the max prefix of
P[0 .. i-1]. When matching failed, we use Failure Link
to backshift proper state and go on. [12]

Figure 4: KMP Matching Method

During the searching phase, what happens to i is sort of
like a finite automaton. At each step, shifts either to
i+1or to i+j (shift j positions forward on occurring a
mismatch). The value of j is just a function of i and does
not depend on other information. So we can draw
something like an automaton with arrows connecting
values of j and labelled with matches and mismatches.
Figure 5 shows the working of KMP algorithm:

Figure 5: KMP Example

Akhtar Rasool Amrita Tiwari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3394 - 3397

3395

The KMP algorithm works by turning the patterns given
into a machine, and then running the machine. It takes
O(m) space and time complexity in pre-processing
phase, and O(n+m) time complexity in searching phase
(independent of the alphabet size). KMP is a linear time
string matching algorithm. [12]

B. Multiple Pattern String Matching Algorithms
Multiple pattern matching is an important problem in
text processing and is commonly used to locate all the
positions of an input string (the so called “text”) where
one or more keywords (the so called “patterns”) from a
finite set of keywords occur. Multi-pattern string
matching arises in a number of applications including
network intrusion detection, digital forensics, business
analytics, and natural language processing. The multiple
pattern matching problems can be defined as:
 Given an input string [1...n] of length and a finite
set of keywords [p1...pr] where each is a string
= 1, 2 . . . of length over a finite character
set Σ and the total size of all keywords is denoted as
│ │, the task is to find all occurrences of any of the
keywords in the input string[6]. There are many
algorithms used for multi-pattern searching, which
varies in speed, measured in terms of time complexity.
A few are described below:

1) Aho-Corasick String Matching Algorithm: Aho-
Corasick algorithm is one of the earliest multi-pattern
exact matching algorithms. Aho-Corasick algorithm is a
direct extension of the KMP algorithm by combining
with the automata. The running time of Aho-Corasick is
independent of the number of patterns. The complexity
of Aho-Corasick algorithm is O (nlogn). Similar to
KMP algorithm, Aho-Corasick algorithm scans the
character in text one by one without any jump.
There are two versions : nondeterministic and
deterministic of the Aho-Corasick (AC) multi-pattern
matching algorithm. The deterministic version makes
half as many state transitions as made by the non-
deterministic version. In the deterministic version
(DFA), each state has a transition pointer for every
character in the alphabet as well as a list of matched
patterns. Aho and Corasick show how to compute the
transition pointers. The number of state transitions made
by a DFA when searching for matches in a string of
length n is n. [9]
In pre-processing stage, Aho-Corasick constructs a state
machine (Trie) from the strings to be matched. The state
machine starts with an empty root node, which is the
default non-matching state. Each pattern to be matched
adds states to the machine, starting at the root and going
to the end of the pattern. The state machine is then
traversed and failure pointers are added from each node
to the longest prefix of that node which also leads to a
valid node in the Trie. [14]
Aho-Corasick works by constructing a state machine
from the strings to be matched. The state machine starts
with an empty root node which is the default non-
matching state. Each pattern to be matched adds states
to the machine, starting at the root and going to the end
of the pattern. The state machine is then traversed and
failure pointers are added from each node to the longest

prefix of that node which also leads to a valid node in
the trie. We show a single node of the state machine in
Figure 6. [10]

Figure 6 :Aho-Corasick Node Selection

 Given a set of patterns = {search, ear, arch, chart},
Figure 7 shows the state machine and goto function. If
the text string is “strcmatecadnsearchof” . Aho-Corasick
algorithm scans the character in text one by one without
any jump.

Figure 7:Aho-Corasick Example

2) Commentz – Walter String Matching Algorithm:
Commentz-Walter algorithm combines the Boyer-
Moore technique with the Aho-Corasick algorithm. In
pre-processing stage, differing from Aho-Corasick
algorithm, Commentz-Walter algorithm constructs a
converse state machine from the patterns to be matched.
Each pattern to be matched adds states to the machine,
starting from right side and going to the first character
of the pattern, and combining the same node.
In searching stage, Commentz-Walter algorithm uses
the idea of BM algorithm. The length of matching
window is the minimum pattern length. In matching
window, Commentz-Walter scans the characters of the
pattern from right to left beginning with the rightmost
one. In case of a mismatch (or a complete match of the
whole pattern) it uses a pre-computed shift table to shift
the window to the right.[14]
For pattern set { search, ear, arch, chart }, Figure 8
shows the Commentz-Walter state machine and the goto
function for the text string “strcmatecadnsearchof”.

Figure 8: Commentz Walter Example

Akhtar Rasool Amrita Tiwari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3394 - 3397

3396

TABLE II: A COMAPARATIVE ANALYSIS

III.APPROXIMATE STRING MATCHING ALGORITHMS
Approximate String matching is a problem in computer
science which is applied in text searching, pattern
recognition and signal processing applications. For a
text T[1..n] and pattern P[1...m], we are supposed to
find all the occurrences of pattern in the text whose edit
distance to the pattern is at most K. The edit distance
between two strings is defined as minimum number of
character insertion, deletion and replacements needed to
make them equal.

Figure 9: Approximate String Matching Example

Here K(T,P) = 3.
Approximate string matching problem is solved with the
help of dynamic programming.

IV.COMPARATIVE ANALYSIS
This work categorizes the algorithms into various
categories to emphasize the data structure that drives the
matching. These categories are automaton-based,
heuristics-based and hashing-based.
An automaton-based algorithm builds a finite state
automaton from the patterns in the pre-processing stage
and tracks the partial match of the pattern prefixes in the
text by state transition in the automaton.
A heuristics-based algorithm allows skipping some
characters to accelerate the search according to certain
heuristics. Some algorithms require a verification
algorithm following a possible match to verify if a true
match occurs.
A hashing based algorithm compares the hash values of
characters in the text segment by segment with those of
the characters in the patterns. If both hash values are
equal, a possible match may occur. The characters in the
text and those in the patterns are then compared to
verify if a true match occurs. [13]
 Based on all the data represented in the paper, a
comparative analysis of all the algorithms is:presented
in Table II

IV. CONCLUSION
This research reviews and profiles some typical string
matching algorithms to observe their performance under
various conditions and gives an insight into choosing
the efficient algorithms. By analyzing these string

matching algorithms, it can be concluded that Boyer-
Moore, Aho-Corasick and KMP string matching
algorithms are efficient. Practice shows that BM
Algorithm is fast in the case of larger alphabet. KMP
decreases the time of searching compared to the Brute
Force algorithm. Exact and approximate string matching
algorithms makes various problems in the solvable state.
Innovation and creativity in string matching can play an
immense role for getting time efficient performance in
various domains of computer science.

REFERENCES

[1] Rajender Singh Chillar, Barjesh Kochar “RB-Matcher: String
Matching Technique”, World Academy of Science, Engineering
and Technology 42 2008,pp.132-135.

[2]http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_sear
ch_algorithm.

[3] Jingbo Yuan, Jisen Zheng, Shunli Ding “An Improved Pattern
Matching Algorithm”, Third International Symposium on
Intelligent Information Technology and Security Informatics,
2010 ,pp.599-603.

[4] http://en.wikipedia.org/wiki/String_matching.
[5] Predrag Bro anac, Leo Budin, and Domagoj Jakobovi

“Parallelized Rabin-Karp Method for Exact String Matching”
Int. Conf. on Information Technology Interfaces, June 27-30,
2011, Cavtat, Croatia,pp. 585-590.

[6] Charalampos S. Kouzinopoulos and Konstantinos G. Margaritis
“A Performance Evaluation of the Preprocessing Phase of
Multiple Keyword Matching Algorithms” Panhellenic
Conference on Informatics,2011,pp.85-89.

[7] http://www.digitalforensicssolutions.com/Scalpel.
[8] R. Boyer and J. Moore “ A fast string searching algorithm”,

CACM, 20,10, 1977,pp.262-272.
[9] Xinyan Zha and Sartaj Sahni “Multipattern String Matching On

A GPU”,IEEE,2011,pp. 277-282.
[10] Nathan Tuck, Timothy Sherwood, Brad Calder, George

Varghese “Deterministic Memory-Efficient String Matching
Algorithms for Intrusion Detection” IEEE INFOCOM 2004.

[11] Prasad J C#1, Dr.K.S.M.Panicker “Single Pattern Search
Implementations in a Cluster Computing Environment”, on
Digital Ecosystems and Technologies 2010,pp.391-396.

[12] A- Ning Du, Bin- Xingfang, Xiao-Chun Yun, Ming-Zenghu, Xiu-
R ong Zheng,” Comparision of String Matching Algorithms:
An Aid To Information Content Security” Proceedings of the
Second International Conference on Mache Learmng and
Cybernetics, xi", 2-5 November,2003,pp. 2996-3001.

[13] P0-Chinglin, Zhi-Xiang Li, Ying-Darlin, Yuan-Chang Lai, Frank
C. Lin “ Profiling and Accelerating String Matching Algorithms
In Three Network Content Security Applications”, IEEE
communications surveys The Electronic Magazine of Original
Peer-Reviewed Survey Articles, 2ND QUARTER 2006,
VOLUME 8, NO. 2, pp. 24-36.

[14] Yang Dong hong, Xu Ke, Cui Yong “An Improved Wu-Manber
Multiple Patterns Matching Algorithm” by the National Natural
Science Foundation of China under Grant No.60473082 and the
National Grand Fundamental Research 973 Program of China
pp. 675-680.

Akhtar Rasool Amrita Tiwari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3394 - 3397

3397

