
Securing Cloud-Native Containerized Applications:
Orchestration, Supply Chain, and Runtime Protection

Vishakha Sadhwani#1
#Department of Computer Engineering, University of Maryland

 College Park, MD 20742, United States

Abstract—Over the past few years, cybersecurity
professionals have publicly recognized that container
technology has been increasingly popular and used by
numerous enterprises. Cloud native environments have
gained significant momentum in enabling the creation and
deployment of applications across many locations, resulting
in enhanced flexibility and a simplified development lifecycle.
Containers present distinct cybersecurity concerns that
involve several components such as images, containers, hosts,
runtimes, registries, and orchestration systems. This
emphasizes the imperative necessity to allocate resources
towards ensuring the security of the container stack. The
research, published by Aqua Security on June 21st, highlights
various methods via which attackers might compromise a
company's container infrastructure and the image supply
chain. In addition, they projected a 600% increase in the next
few years if proper measures are not taken. This article
examines the security factors involved in container
orchestration and the software supply chain landscape. In
order to address these problems, it is crucial to implement
standardized security and configuration controls. This study
introduces three broad scenarios that tackle prevalent
security vulnerabilities in container management, along with
the corresponding solutions that are currently accessible. The
use cases encompass: (I) Ensuring the security of application
containers by preventing misconfigurations in the
orchestrator (II) Protecting application containers from
potential threats posed by insecure registries (III)
Implementing a shielding cloud platform to protect against
hacked containers
Keywords— Cybersecurity, Containers, Orchestrations,
Kubernetes, Infrastructure, Software Supply chain

I. INTRODUCTION
Cloud providers offer a purpose-built infrastructure for
containerized application deployments, ensuring managed
availability, scalability, resiliency, and a secure base for
your software. It provides an abstract layer that facilitates
deployment, scaling, expanding interconnections, and
continuously monitoring this infrastructure, thereby
streamlining operations and ensuring quality within the
cloud environment.
However, the diverse composition of cloud infrastructure
makes it susceptible to attack if even one component is
compromised [1]. This is a key concern for container-based
cloud deployments, where vulnerabilities can surface in
various compromised resources: software packages,
container images, orchestrator misconfigurations, and
many more. These compromises might stem from
malicious actors, bad dependencies, bypassed code
reviews, or compromised systems within the deployment
pipeline. As cloud infrastructure scales, the challenge of
protecting it from such attacks grows exponentially [2].
Therefore, it is imperative to include additional security

measures during cloud container orchestration and
provisioning, alongside continuous reviews of processes
and configurations. Further supplementing it with auditing
systems to maintain a strong security posture for your
application.
To effectively implement security measures, it's essential
to understand the various elements and processes involved
in building and deploying containerized applications.
These elements include images, container runtimes, cluster
networks, and access to data deployed in workloads across
multiple clouds. As applications scale, the complexity of
managing, securing, and debugging them increases due to
the multitude of component workflows.
The nextsection presents the main components connected
with distant settings and services, organized into
categories:
1. Protected source code: Safeguard code across local

storage, development environments, and version
control management systems [1].

2. Protected system for constructing and evaluating
infrastructure: Evaluate container orchestration
platforms such as Kubernetes[3] for misconfigurations
and applying appropriate authentication, authorization
methods and safety controls.

3. Vulnerability scanning: Involves conducting scans on
container images and runtimes to identify any potential
weaknesses or vulnerabilities before they are deployed
for production. Develop and deploy systems for
verifying the authenticity and integrity of images.

4. Container access and microservice communication:
Oversee and safeguard the access to containers and
ensure secure communication between microservices.

5. Ensuring compliance across multi cloud platforms:
Enforce compliance and standards with company
policies by implementing restricted namespace access
and strong authentication/authorization for applications
[3].

6. Logging and monitoring: Implement practices to
consistently record and track applications [10], thus
mitigating the risk of unauthorized and harmful
utilization of resources.

These are just some high-level categories that are involved
in an application delivery lifecycle. While numerous
studies have been undertaken on host and container level
security, there is a lack of emphasis on container
management and supply chain security [2]. This study
explores three common use cases at the platform level,
aiming to enhance users' comprehension of security issues
related to container management platforms. Additionally,
it provides an overview of the available strategies for
securing application containers.

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

14

ISSN:0975-9646

II. BACKGROUND
A. Challenges in Container Security
Presently, the security concerns pertaining to containers
and their orchestration are of great significance. Failure to
integrate security as a fundamental component of the
application lifecycle not only puts corporations at risk, but
also jeopardizes the businesses of their customers.
Organizations encounter significant challenges in
guaranteeing the security and coordination of containers
[2]. Failure to adequately address security across the whole
application development process exposes both
organizations and their consumers to possible
vulnerabilities. In addition, developers often perceive
security measures as impeding innovation and speed at
which products are brought to the market [6]. This
emphasizes the necessity of implementing a cohesive
strategy that integrates security strategies with the
capability to promptly adjust and adapt. An effective
solution could involve implementing a continuous security
paradigm that prioritizes "Shift Left Security"[10]. This
addresses the question of what needs to be done, but the
question of how remains: how can these strategies be
integrated into your application development process?
Although the cloud promotes shared accountability and
helps to tackle certain security concerns, there are still
instances where both the application and the cloud platform
it operates on can be vulnerable to significant attacks.
This research paper focuses on tackling a specific issue and
proposes a conceptual framework that revolves around the
essential elements of deploying containerized apps in the
Cloud. Furthermore, it highlights the potential hazards that
can occur in the absence of adequate precautions and
explores the ways in which orchestration, supply chain, and
cloud security tactics can be utilized to mitigate these risks.
Consequently, it is necessary to analyze the challenge and
divide it into the subsequent separate instances of usage:

(I) Ensuring the security of application containers by
preventing misconfigurations in the orchestrator
(II) Protecting application containers from potential
threats posed by insecure registries
(III) Implementing a shielding cloud platform to
protect against hacked containers

B. Literature Review
This study employs a wide variety of sources, including
well-regarded academic journals, industry magazines, and
dissertations collected from online archives. This wide-
ranging collection illustrates the need for a thorough
understanding of the challenges in securing Cloud
containers and practical guidance for implementing
solutions. By analyzing several internet platforms, we
gained significant insights into the newest market trends
and unique business concerns. Furthermore, we effectively
discovered recurring issues and available remedies within
this domain. The selection criteria we employed focused
on multiple facets of container deployment security in
cloud environments, encompassing characteristics,
remedies, risks, weaknesses, exploits, accessible utilities,
pertinent standards, established assessment methodologies,

potential applications of container technology, and
alternative containerization approaches[2]. Employed
Google Scholar to do searches utilizing keywords such as
"application container security," "cloud platform security,"
and "container orchestration." Following the initial search,
we excluded generic resources that were not directly
applicable to container security. In the end, we utilized a
retrospective citation search strategy to expand the scope
of our literature analysis by examining the references cited
in the selected works.

III. THREAT MODELS
A. Attack Scenarios and Proposed Solutions
Although there are many instances that illustrate the
security of containerized applications, attempting to
compile a comprehensive list would be impractical and
burdensome for readers. Hence, we suggest a novel
classification of utilization scenarios, with a primary
emphasis on registries and orchestration[3][4]. The
objective of this research is to provide a comprehensive
understanding of the potential hazards, weaknesses, and
supply chain considerations linked to application
containers and orchestration systems like Kubernetes.

I. Use Case 1 : Protecting application containers from
orchestrator misconfigurations
Kubernetes has emerged as the prevailing method for
managing and coordinating containers, especially in cloud-
based settings[6]. Due to its robust power and capacity to
handle large workloads, it is a crucial tool for
contemporary cloud-based applications in diverse sectors.
Unresolved Kubernetes security misconfigurations can
present substantial hazards to your cloud infrastructure and
applications[7]. It is essential to analyze and comprehend
the typical weaknesses in Kubernetes manifests
(configuration files) in order to ensure the security of
containerized workloads in the cloud.
According to an empirical study that examined 2,039
Kubernetes manifests from 92 open-source repositories[6],
common misconfigurations include the lack of resource
restrictions, the absence of securityContext settings, and
other similar issues[7]. These vulnerabilities can result in
container breaches, illegal entry to cloud resources, data
extraction, and a compromised cloud environment. To
prevent these attacks, it is crucial to do security-focused
code reviews and utilize static analysis tools[8] on
Kubernetes manifests.

Figure 1. High Level Overview of container stack with

the Orchestration Platform

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

15

Table 1 Scenarios of Attack for Use Case (I) - Protecting
application containers from orchestrator misconfigurations

II. Use Case 2 : Safeguarding applications containers
against unsecured registries
Unsecured registries present significant risks to
containerized applications as they have the potential to
store malicious images that contain backdoors, malware, or
obsolete images that are filled with vulnerabilities[1]. In
order to reduce these risks, it is advisable to give priority
to the utilization of reliable and protected registries, such
as cloud-native solutions (such as Google Artifact
Registry, Amazon ECR, Azure artifacts or any internal
repository) or well-managed private registries. Deploy a
system for ongoing vulnerability scanning to identify
potential vulnerabilities in pictures both prior to and
subsequent to their storage[10]. Utilize image signature
and verification techniques to guarantee the integrity and
source of the image. Implement stringent access controls
by utilizing IAM technologies and network limitations to

restrict unauthorized interactions with the registry. The
image below illustrates the locations where attacks can
occur, followed by a table that categorizes and presents
distinct attack scenarios.

Figure 2. Overview of Security protection requirements for
the supply chain components within the cloud
environment.

Table 2 Scenarios of Attack for Use Case (II) -
Safeguarding applications containers against
unsecured registries

III. Use Case 3 : Shielding platform from compromised
containers
A container that has been compromised in cloud
environments presents a substantial risk, as it can be
utilized to gain unauthorized access to additional cloud
resources, sensitive data, or propagate horizontally inside
your network[9]. To protect your platform, prioritize
proactive containment by using runtime security
technologies that can identify abnormal container
behavior. Employ micro-segmentation to restrict network
traffic, so restricting the extent of an attacker's access, even
in the event of a container breach. Adopt a zero-trust
strategy in your cloud environment, where access is limited
to the minimum necessary based on the concept of least
privilege. Whenever feasible, adopt immutable
architecture to impede an attacker's capacity to establish a

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

16

lasting presence within a compromised container. The
following table elucidates the different attack situations
and proposes methods that can be taken to fortify your
platform.

Table 3 Scenarios of Attack for Use Case (III) - Shielding

platform from compromised containers

IV. CONCLUSION
Cloud-native containerized apps have significant
advantages in terms of scalability, portability, and
improved security for software development [5]. This
makes them very suitable for massive language models in
the era of Generative AI. Kubernetes, specifically, offers a
resilient orchestration platform for hosting containers
securely. However, a significant obstacle to the broad use
of containers is the management of the various security
problems they entail. Currently, there's a lack of
comprehensive guides addressing orchestration platform
oversights, vulnerabilities, attack scenarios, and cloud-
agnostic solutions. This work aims to bridge this gap by
analyzing the primary threats arising from images,
registries, orchestration misconfigurations, and runtime
risks.
Therefore, I have presented three use cases encompassing
orchestrated containers and the software supply chain.
These use cases demonstrate how existing cloud solutions
can be strategically implemented to bolster containerized
application security. This research contributes to a more
secure and standardized approach to containerized
application deployment in cloud environments.
This work presented three critical use cases for container
security: (I) protecting against orchestrator
misconfigurations, (II) safeguarding against insecure
registries, and (III) shielding the platform from
compromised containers.
To address these use cases, a range of solutions can be
leveraged. These include policy enforcement tools (OPA,
Kyverno), security scanning (open-source solutions), and
cloud-focused solutions like trusted registries,
vulnerability scanning, image signing, runtime security,
micro-segmentation, immutable infrastructure, and zero-
trust principles. While these solutions offer significant
advantages, open challenges remain. Further research is

needed to focus on enhanced vulnerability management
and digital investigation capabilities within containerized
environments. By addressing these challenges, we can
further strengthen the security posture of container
technologies within the cloud, fostering their wider
adoption and facilitating innovation.
In this research paper, we have explored the critical domain
of container security within cloud-native environments.
Our exploration highlights the urgency of implementing
robust security measures to protect the integrity of
applications, the underlying orchestration layer, and the
overall platform against a landscape of potential threats and
vulnerabilities.
The analysis identified three core use cases:
(I) Protecting application containers from orchestrator
misconfigurations: Orchestrator misconfigurations can
leave containers vulnerable. This research emphasizes the
importance of enforcing strong configuration policies,
including the use of policy enforcement tools.
(II) Safeguarding application containers against
unsecured registries: Unsecured registries can be sources
of compromised or malicious container images. Rigorous
image scanning, registry authentication, and robust access
controls are essential. This includes vulnerability detection
tools, security scanning (including open-source solutions),
and cloud-focused CI/CD mechanisms like trusted
registries, vulnerability scanning, and image signing.
(III) Shielding the platform from compromised
containers: A compromised container can endanger the
entire platform. Strategies such as network isolation,
minimizing container privileges, and continuous runtime
monitoring are crucial to limit the potential impact.
The findings of this research highlight the multifaceted
nature of container security challenges. To achieve
comprehensive protection, a defense-in-depth approach is
vital [10], encompassing elements such as:
1. Robust image governance: Strict image provenance

tracking, vulnerability scanning, and secure image
registries.

2. Stringent configuration management: Enforcing
configuration best practices and employing tools for
policy validation and drift detection.

3. Runtime security mechanisms: Runtime monitoring,
behavior analysis, and network micro-segmentation to
prevent and contain malicious activity.

V. FUTURE RESEARCH DIRECTIONS

Further research avenues could investigate emerging areas
like:
1. Confidential Computing for Enhanced Container
Isolation
Several studies indicate that data exfiltration is a major
concern within container security. It would be valuable to
analyze tools that provide hardware-level encryption to
shield the contents of containers while in use. However,
encryption and decryption processes can introduce
performance overhead [11]. Further research is needed to
explore optimal solutions that balance security gains
against potential performance impacts.

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

17

2. Integration of Machine Learning Techniques for More
Sophisticated Anomaly Detection
Incorporating machine learning (ML) algorithms can
enable proactive threat identification by detecting
deviations from normal behavior patterns within
containerized environments. This approach requires the
development of trained models using container-specific
attack data, as well as measures to reduce the attack surface
[12]. Additionally, research should address how ML
models can continuously adapt to evolving attack patterns
and the dynamic nature of cloud environments.
By addressing these use cases and recommendations,
researchers and practitioners can significantly advance the
state of container security, fostering a more secure and
resilient cloud-native landscape.

REFERENCES
[1] Bhowmik, S., Saira Bhanu, S. M., & Rajendran, B. (2020, February).

Container Based On-Premises Cloud Security Framework. 2020
International Conference on Inventive Computation Technologies
(ICICT). https://doi.org/10.1109/icict48043.2020.9112561

[2] Sultan, S., Ahmad, I., & Dimitriou, T. (2019). Container Security:
Issues, Challenges, and the Road Ahead. IEEE Access, 7, 52976–
52996. https://doi.org/10.1109/access.2019.2911732

[3] Paladi, N., Michalas, A., & Dang, H. V. (2018). Towards Secure
Cloud Orchestration for Multi-Cloud Deployments. Proceedings of
the 5th Workshop on CrossCloud Infrastructures & Platforms -
CrossCloud’18. https://doi.org/10.1145/3195870.3195874

[4] Sadhwani, V. (2022). Cloud Container Security Next Move. Digital
Commons at Harrisburg University.
https://digitalcommons.harrisburgu.edu/csms_dandt/3/

[5] Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2019, July 1). Cloud
Container Technologies: A State-of-the-Art Review. IEEE

Transactions on Cloud Computing, 7(3), 677–692.
https://doi.org/10.1109/tcc.2017.2702586

[6] Rahman, A., Shamim, S. I., Bose, D. B., & Pandita, R. (2023, May
26). Security Misconfigurations in Open Source Kubernetes
Manifests: An Empirical Study. ACM Transactions on Software
Engineering and Methodology, 32(4), 1–36.
https://doi.org/10.1145/3579639

[7] Shamim, S. I. (2021, August 18). Mitigating security attacks in
kubernetes manifests for security best practices violation.
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering. https://doi.org/10.1145/3468264.3473495

[8] Bose, D. B., Rahman, A., & Shamim, S. I. (2021, June). ‘Under-
reported’ Security Defects in Kubernetes Manifests. 2021 IEEE/ACM
2nd International Workshop on Engineering and Cybersecurity of
Critical Systems (EnCyCriS).
https://doi.org/10.1109/encycris52570.2021.00009

[9] Islam Shamim, M. S., Ahamed Bhuiyan, F., & Rahman, A. (2020,
September). XI Commandments of Kubernetes Security: A
Systematization of Knowledge Related to Kubernetes Security
Practices. 2020 IEEE Secure Development (SecDev).
https://doi.org/10.1109/secdev45635.2020.00025

[10] Sojan, A., Rajan, R., & Kuvaja, P. (2021, November). Monitoring
solution for cloud-native DevSecOps. 2021 IEEE 6th International
Conference on Smart Cloud (SmartCloud).
https://doi.org/10.1109/smartcloud52277.2021.00029

[11] Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2019, July 1). Trusted
Container Extensions for Container-based Confidential Computing,
Cryptography and Security,
https://doi.org/10.48550/arXiv.2205.05747

[12] Lin, Y., Tunde-Onadele, O., & Gu, X. (2020, December 7). CDL:
Classified Distributed Learning for Detecting Security Attacks in
Containerized Applications. Annual Computer Security Applications
Conference. https://doi.org/10.1145/3427228.3427236

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

18

https://doi.org/10.1109/access.2019.2911732
https://digitalcommons.harrisburgu.edu/csms_dandt/3/
https://doi.org/10.1109/smartcloud52277.2021.00029
https://doi.org/10.48550/arXiv.2205.05747

