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Abstract-The paper will aim to be a primer on Quantum 
computing and its basics in addition to analyzing the current 
state of Quantum Computing and its limitations in the field 
of Artificial Intelligence by comparing the results between a 
Quantum Neural Network and Classical Neural Networks 
when trained, validated and tested on the Modified National 
Institute of Standards and Technology (MNIST) datasets.  

1. INTRODUCTION
A traditional computer that we know of represents 
information in the form of tiny switches also known as bits 
(0 or 1). Every digital object we know of is made up of 
millions of combinations of these bits. This form of 
representation however poses limitations and challenges as 
it is not an accurate representation of the world around us. 
For one, this form of representation limits even the state-
of-the-art supercomputers to execute sequentially. This 
means that to test every possibility or outcome for a 
problem, each of them needs to be run individually and 
validated to get the results leading to an immense amount 
of time to be spent on operations.  
Another limitation is that representing information in the 
form of bits does not reflect the way the universe works or 
interacts. In reality, there may be a correlation between two 
pairs of information or events. This can be represented 
accurately in quantum computers due to the concept of 
quantum entanglement which in binary form cannot be 
inherently factored in.  
In addition, in the real world every outcome is uncertain 
and probabilistic and a binary form of representing 
information does not factor that in. The paper will now aim 
to explain some of the main concepts that govern quantum 
computing and will provide analogies to the concepts for a 
clear understanding.  

Qubits 
Quantum computing, unlike a regular computer, leverages 
quantum mechanics and the concept of qubits. Qubits are 
typically subatomic particles such as electrons and photons 
that do not represent information as either on or off, but as 
both on and off at the same time or they are always 
somewhere in between. However, when they are measured 
each qubit can be only in a 1 or 0 state. To give an analogy, 
the concept of qubits is similar to flipping a coin.  
When a coin is flipped the result can be either heads or 
tails. When the coin is flipping the coin is both 1 or 0. 
However, when an individual measures the result of the 
coin flip the outcome is always either heads or tails and 
never a state in between. To achieve this property of 
existing in multiple states at the same time until measured, 
qubits rely on two principles: Superposition and 
entanglement.  

Superposition  
Superposition in the context of quantum computing refers 
to the idea that qubits can exist in both states 0 and 1 at the 
same time. That is that they can be present in either state 
with some relative probability. In superposition, the state 
is a linear combination of an infinite number of states 
between 0 and 1. The state can be determined only when 
measured and this is known as quantum measurement. This 
means that for an n number of qubits, they can exist in a 
superposition of 2n states allowing us to store as many 
configurations at any given point in time. This in contrast 
to n classical bits can only represent one single 
configuration or state at any given point in time.  
An example illustrating the concept of superposition is that 
of a single photon passing through a beam splitter. Until 
the photon is detected, the photon has a state of presence in 
both arms of the splitter with some probability. Again, 
when measured through the photon is either on one side of 
the splitter or the other.  

Quantum Entanglement 
Quantum entanglement is the phenomenon where two 
qubits have a close connection where they react to each 
other state changes regardless of the distances between 
them. Changing the state of one qubit instantaneously 
allows for the state of another qubit to change predictably. 
This means that when one qubit is measured, the state and 
properties of the other entangled qubit can also be deduced. 
This property allows for an exponential increase in a 
quantum machine's crunching ability as to describe 
entangled states using ordinary bits is extremely time 
computation intensive.  
To provide an analogy on the phenomena, the idea of 
entanglement is similar to that of reading a book. Reading 
a singular page might not give us enough information about 
the book but when all the pages are read together and the 
correlations between the pages are accounted for then all 
the information in the book can be deduced.  

2. HYPOTHESIS
I believe that quantum computing is the future of modern 
computing and harnessing its properties will allow us to 
solve many interesting problems. In this paper, I aim to 
show that the current state of quantum computing allows 
us to build meaningful applications that are comparable 
with the applications and systems built on the classical 
computers we have today.  
The paper aims to compare results for the accuracy and 
training times between a quantum neural network and 
classical neural networks when trained and validated on the 
MNIST dataset. I hypothesize that the results obtained 
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from each of the methods are comparable and will result in 
accurate prediction models.  
 

3. DATASET 
The MNIST dataset is a large collection of handwritten 
numbers that are used to train image recognition models. 
Each image is black and white and is of size 28 x 28 pixels. 
The background is black and the number in the image is 
represented by white pixels. In addition, the dataset 
contains 60,000 training images and 10,000 testing images. 
This gives us the training set to have a dimension of 60,000 
x 28 x 28 and the testing set to have a dimension of 10,000 
x 28 x 28. Each image has an associated label with labels 
ranging from 0 - 9.  
 

4. CLASSICAL NEURAL NETWORK 
To implement the classical forward neural network (FNN) 
where the model is a linear stack of layers, I used the Keras 
module in python while running each of the cells on a 
Jupyter notebook to produce the results.  
 
Preprocessing 
To pass the training data into the sequential model, I 
flattened each of the data inputs from 28 x 28 into a 1-
dimensional vector of size 784 x 1.  
In addition, I scaled each of the images from the 0 - 255 
scale which represents each pixel to a normalized scale 
where each value lies between 0 and 1.  
The last preprocessing step before forming the model was 
representing the result in a more desirable fashion where 
the result is not represented by a singular class value 
between 0 - 9 but by a vector of length 9 where the 
expected label has a value of 1 while other values in the 
vector are 0. For example, the class label 3 would be 
translated to be: [0, 0, 1, 0, 0, 0, 0, 0, 0]. This way the result 
from our neural network while testing can be a vector of 
probabilities where each position represents the likelihood 
of the class label being represented in the image. This way, 
the argmax (position associated with the maximum value) 
of the output vector from the neural network would give us 
the required class label.  
  
Model Layers 
Layer 1: Dense neural network, Nodes: 1024 
   Activation Function: ReLU 
   Dropout: 0.2 
Layer 2: Dense neural network, Nodes: 1024 
   Activation Function: ReLU 
   Dropout: 0.2 
Layer 3: Dense neural network, Nodes: 10 
   Activation Function: Softmax  
Loss Function: Cross-Entropy 
Optimizer: Adam  
Batch Size: 512 
Epochs: 5  
 
Results 
Accuracy of the model on test data: 97.96 % 
 
 

5. CONVOLUTIONAL NEURAL NETWORK (CNN) 
The second neural network that will be built to be trained 
on the data is a convolutional neural network. The network 
aims to identify key features in the image by passing filters 
also known as kernels over the image which is a dot 
product application over the entire image. This along with 
a process of max pooling which essentially picks the max 
value in a subset leaves us with a feature map with only the 
important details.  
 
Preprocessing 
In the case of a CNN, we do not flatten the image unlike in 
the case of the fully connected neural network. Every other 
preprocessing step remains the same as before.  
  
Model Layers 
Layer 1:  
    Convolution Layer, Kernels: 32, Kernel Shape: 3 x 3  
   Activation Function: ReLU 
   Dropout: 0.2 
Layer 2:  
   Convolution Layer, Kernels: 32, Kernel Shape: 3 x 3  
   Activation Function: ReLU 
   Max Pooling: 2 x 2  
Layer 3:  
    Convolution Layer, Kernels: 64, Kernel Shape: 3 x 3  
   Activation Function: ReLU 
   Max Pooling: 2 x 2  
Layer 4: Dense neural network, Nodes: 512 
   Activation Function: ReLU 
   Dropout: 0.2  
Layer 5: Dense neural network, Nodes: 10 
   Activation Function: Softmax 
Loss Function: Cross-Entropy 
Optimizer: Adam  
Batch Size: 512 
Epochs: 6  
 
Results 
Accuracy of the model on test data: 98.94 % 
 

6. QUANTUM NEURAL NETWORK (QNN) 
A quantum neural network allows for classical or quantum 
data to be trained by supervised learning as was the case 
with the above two models. They consist of a sequence of 
quantum circuits that transform input quantum states to a 
qubit result which is then measured to get the results. In 
order to implement a QNN we use the TensorFlow 
Quantum library and its in-built functions.  
 
Preprocessing 
Due to the limitations of the quantum computing resources 
available to perform the experiment the data had to be 
reduced to just two classification values. The two classes I 
chose to train the QNN on were classes 0 and 1. Due to the 
size of the current quantum computers, the images also had 
to be downsized from a 28 x 28 pixel size to 4 x 4.  
To pass an input into a quantum neural network, data needs 
to be represented in the form of quantum circuits. Since we 
are working with images, a direct comparison can be made 
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between pixels and images where each pixel value can be 
represented by a qubit. The state of each qubit, since 
limited to either 0 or 1, leaves us to transform each of the 
pixels to conform with the values by normalizing the 4 x 4 
image and applying a round function to each of the pixels.  
Each of the normalized data as qubits needs to be 
transformed and represented in the form of quantum 
circuits now. A quantum circuit is a combination of 
quantum gates that are applied to transform the qubits 
individually and in a correlated fashion. An example of a 
quantum gate is an X gate which is like the traditional NOT 
gate we are familiar with but one that is applied on qubits 
and helps switch a qubit with a probabilistic value of 0 to 
be 1 and vice-versa. There is also a designated output qubit 
assigned that will allow us to determine the prediction of 
the model.  
 
Model Layers 
In the model, we apply multiple layers of gates such that 
each of the qubits representing data transformed from the 
pixel representation acts and transforms the output qubit. 
This is possible due to the principle of quantum 
interference we discussed above.  
We use the quantum circuit that we created that is a 
combination of X, Y, XX and ZZ gates to pass into a 
Parameterized Quantum Circuit (PQC). A PQC is a hybrid-
classical machine learning quantum model that trains on 
quantum circuits to produce results.    
Layer 1: Parametrized Quantum Circuit,  
   Input: Quantum Circuit applied on 4 x 4 Qubit grid  
   Result: Output Qubit  
Loss Function: Cross-Entropy 
Optimizer: Adam  
Batch Size: 32 
Epochs: 4  
 
Results 
Accuracy of the model on test data: 87.50 % 
 

7. COMPARISON OF THE RESULTS 
Below we shall compare the accuracy, number of epochs 
taken to train the model before overfitting, and the training 
time per epoch across the three models.  
Accuracy comparison of each of the models  

 
As one can see the quantum neural network was the least 
accurate of the three models with the convolutional neural 
network being the most accurate.  
 

Training time per epoch   

 
The training times of the three models are vastly different 
for each epoch given similar batch sizes. The reason can be 
attributed to the number of layers in each model and the 
complexity in the computations in finding the right weight 
vectors for each of the nodes in the neural network.  
 
Number of epochs to minimize loss function and not 
overfit the model 

 

 
In this comparison, each of the models has a comparable 
number of epochs to train the model before overfitting the 
data. I came to this conclusion by validating the model on 
a subset of the training data and found the optimal number 
of epochs at the point where validation accuracy started to 
reduce.  
 

8. CONCLUSION 
In today’s day and given the current problem space, 
classical models are superior to the quantum systems 
existent when applied to classical data. This can be 
attributed to the fact that classical data can be accurately 
represented and trained on by the current systems as 
opposed to the quantum neural network which requires for 
the data to be transformed and represented in a quantum 
fashion. In addition, the computing power and number of 
coherent qubits available also limit the amount of 
information that can be encoded and used as features in 
order to make predictions. In our case, even after reducing 
the output classes and the training size of the data, the 
accuracy of the quantum model was lower than the 
classical neural networks. This just shows that as quantum 
computers become a more prevalent computing system, 
classical computers will still remain in existence with both 
solving problems that they are each best suited for.  
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9. FUTURE WORK 
This paper aims to apply the quantum neural network 
system to a classical problem where the classical models 
outperformed the quantum neural network. The next step 
would be to harness some of the inert properties of the 
quantum neural network and apply it on a quantum system 
(e.g. particle reactions) and then compare the results and 
accuracy of a classical neural network with a quantum 
neural network.   
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