
Finite Markov Decision Process Frame Work Algorithm

P.Sushma #1, Dr.Yogesh Kumar Sharma *2, Dr.S. Naga Prasad #3

1 Ph.D Scholar, Dept of CS, JJTU University, Jhunjhunu, Churela, Rajasthan,India

2.Associate Professor, Dept of CS, JJTU University, Jhunjhunu, Churela, Rajasthan,India

3 .Lecturer , Dept of CS, Tara Degree College,Sangareddy,Telangana,India

Abstract:- In machine learning, the environment is formulated as

a Markov decision process (MDP), as many reinforcement

learning algorithms for this context utilize dynamic programming

techniques. The supervised learning and unsupervised learning,

the paradigm of reinforcement learning deals with learning in

sequential decision making problems in which there is limited

feedback. RL is a general class of algorithms in the field of

machine learning that aims at allowing an agent to learn how to

behave in an environment, where the only feedback consists of a

scalar reward signal. This text introduces the intuitions and

concepts behind Markov decision processes and two classes of

algorithms for computing optimal behaviors: reinforcement

learning and dynamic programming. First the formal framework

of Markov decision process is defined, accompanied by the

definition of value functions and policies. The main part of this

text deals with introducing foundational classes of algorithms for

learning optimal behaviors, based on several of optimality with

respect to the goal of learning sequential decisions. Additionally,

it surveys efficient extensions of the foundational algorithms,

differing mainly in the way feedback given by the environment is

used to speed up learning, and in the way they concentrate on

relevant parts of the problem. For both model-based and model-

free settings these efficient extensions have shown useful in

scaling up to larger problems.

1.INTRODUCTION

An MDP is a discrete time-state transition system. MDP is

actually a reinforcement learning task and it satisfies all

the requirements of a Markov property. Furthermore, finite

MDPs or finite MDPs having the finite actions and state

fulfill the requirement of a Markov property. Finite MDPs

are mainly important in reinforcement learning. An MDP

can be described formally with four components:

 A set of possible world states:

 S A set of possible actions: A(s) or A

 Model: T(s, a, s') ~ Probability(s'| s, a)

 A real-valued reward function: R(s) ~ R(s, a) ~

R(s, a, s')

 To understand this framework, we will use the

Grid World example, as depicted in the following

Table Grid World

(1,3) (2,3) (3,3)

(1,2) (3,2)

Smart (2,1) (3,1) (4,1)

MDP has a set of states; it represents all the states that one

can be in. In the Grid World example, it has 12 states and

we can represent them in X and Y coordinates; say, the

start state is (1,1) or the goal state is (4,4). Actually it

doesn't matter whether we call these as 1, 2, 3 12 or

A,B,C ... L. The point is that there are states that represent

something and we should know which state we happen to

be in. We can represent state as s. Action Next are actions-

-things that you can do in a particular state. Actions are the

things I am allowed to execute when I am in a given state.

What will be the actions in the Grid World? In the Grid

World, we can take four types of actions: UP, DOWN,

LEFT, and RIGHT. The point is that your action set will

represent all the things that the agent, robot, or person we

are trying to model is allowed to do. Now, in its

generalized form, you can think of the set of actions one

can take as the function state A(s). However, most of the

time, people just treat it as set of actions or actions that are

allowed on the particular state and represent it as model.

The third part of our framework is the model, sometime

called transition model. It describes the rules of the games

that apply, or is rather the physics of the world. It's

basically a function of three variables: state, action, and

another state. It produces the probability that you end up

transitioning s' given that you were in state s and you took

action a. Here, s' is the state where you end up and s and a

are the given state and action, respectively. In our Grid

World example, we are at the start state. The probability of

going up is 0.8, the probability of going right is 0.1, and

the probability that we end up where we started is 0.1. If

we sum up all the probabilities, it becomes 1, and that's the

way it works. The model is really an important thing and

the reason for its importance is that it describes the rules of

the game. It tells us what will happen if we do something

in a particular place. It captures everything we can know

about the transition: T(s, a, s') ~ Probability(s'| s, a) these

processes are called Markov, because they have what is

known as the Markov property. That is, given the current

state and action, the next state is independent of all

preceding actions and states. The current state captures all

that is relevant about the world in order to predict what the

next state will be. The effects of an action taken in a state

depend only on that state and not on the prior history.

Reward:- It is a scalar value that you get from being in a

state. There are three different definitions of rewards (R);

sometimes it will be very useful to think about them in

different ways. R(s) means we get a reward when entering

into the state. R(s, a) means we get a reward when being in

a state and taking an action. R(s, a, s') means we get a

reward when being in a state, taking an action, and ending

up in a new state. These are all mathematically equivalent

P.Sushma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 56-59

56

ISSN:0975-9646ISSN:0975-9646

but it is easier to think about one form or another: R(s) ~

R(s, a) ~ R(s, a, s') the preceding four components define a

problem; now, we'll look into the solution. The solution to

the MDP is called policy.

Policy:-A plan or a result of classical planning can be

either an ordered list of actions or a partially ordered set of

actions meant to be executed without reference to the state

of the environment. When we looked at conditional

planning, we considered building plans with branches in

them that observed something about the state of the world

and acted differently depending on the observation. In an

MDP, we can assume that it takes only one step to go from

any one state to another. Hence, in order to be prepared, it

is typical to compute a whole policy rather than a simple

plan. A policy is a mapping from states to actions. It says,

no matter what state you happen to find yourself in, here is

the action that it's best to take now. Because of the Markov

property, we'll find that the choice of action needs to

depend only on the current state (possibly the current time

as well) and not on any of the previous states. A policy is a

function that takes state and returns an action. In other

words, for any given state you are in, it tells you the action

you should take: π(s) -> a MDP - more about rewards

Generally, in a reinforcement learning problem, the

actions of the agent will give not only the immediate

rewards but also the next state of the environment. The

agent actually gets the immediate reward and the next

state, and then agent needs to decide on further actions.

Furthermore, the agent normally determines how it should

take the future value into account; it's called model of

long-run optimality. The agent also has to learn from the

delayed rewards; it sometimes takes a long sequence of

actions to retrieve an irrelevant reward and, after some

time, it reaches a state with a high reward. The agent

should also learn which of its actions give it a high reward

based on the past history. This will help decide future

actions. Let's take an example of a chess game. I played a

long game of chess and it took 100 moves and at the end I

lost the game. However, I actually lost the game on the 8th

move; I made a mistake and reversed two moves because

it was a new opening that I was just learning. From that

point on, I played a beautiful game, but the truth is that the

other player had an advantage that I never overcame. I lost

the game, not because I played poorly but because I made

one bad move and that move happened very early. This is

the notion of a late reward. I played this long game of

chess and maybe I played well and screwed up in the end.

Or maybe I played a mediocre game but I had a couple of

brilliant moves and that's why I won. Or maybe I played

very well in the beginning and poorly at the end. Or the

other way round! The truth is that you don't really know;

all you know is that you take a bunch of actions and you

get the reward signal back from the environment such as I

won the game or I lost the game. The action Tuples and

ultimately we have to figure out what action we took for

the given state we were in. It helps to determine the

ultimate sequence of rewards that we saw. This problem is

called temporal credit assignment.

Now, we will look into the Grid World example from

Chapter 1, Reinforcement Learning. Think about how we

learn to get from the start state to the goal (+1) or failure (-

1) depending on the kind of reward we see. In the Grid

World example, the only change is in the rewards we

receive for all states other than the goal (green) and failure

(red) state. Let's say we give the reward for all the states as

+2, and goal and failure have rewards of +1 and -1. Just to

remind you of the rule, the game continues until we reach

the goal or failure state: R(s) = +2 As the reward is +2,

which is very high, and the target is to get the maximum

rewards, in this case we will never get to the goal or

failure state because the game ends as soon as it has

reached to these states and that's the end of our treasure

gathering:

The framework of the MDP has the following elements:

1. State of the system,

2. Actions

3. Transition probabilities

4. Transition rewards

5. A policy

6. A performance metric.

We assume that the system is modelled by a so-called

abstract stochastic process called the Markov chain.

State: The “state” of a system is a parameter or a set of

parameters that can be used to describe a system. For

example the geographical coordinates of a robot can be

used to describe its “state.” A system whose state changes

with time is called a dynamic system. Then it is not hard to

see why a moving robot produces a dynamic system.

Another example of a dynamic system is the queue that

forms in a supermarket in front of the counter. Imagine

that the state of the queuing system is defined by the

number ofpeople in the queue. Then, it should be clear that

the state with time, and then this is dynamic system. It is

to be understood that the transition from one state to

another in an MDP is usually a random affair. Consider a

queue in which there is one server and one waiting line. In

this queue, the state x, Defined by the number of people in

the queue, transitions to x + 1 with some probability and to

x−1 with the remaining probability. The former type of

transition occurs when a new customer arrives, while the

latter event occurs when one customer departs from the

system because of service completion.

Actions: Now, usually, the motion of the robot can be

controlled, and in fact we are interested in controlling it in

an optimal manner. Assume that the robot can move in

discrete steps, and that after every step the robot takes, it

can go North, go South, go East, or go West. These four

options are called actions or controls allowed for the robot.

For the queuing system discussed above, an action could

be as follows: when the number of customers in a line

exceeds some Prefixed number, (say 10), the remaining

customers are diverted to a new counter that is opened.

Hence, two actions for this system can be described as: (1)

Open a new counter (2) Do not open a new counter.

Transition Probability: Assume that action a is selected

in state i. Let the next state be j. Let p(i,a,j) denote the

probability of going from state i to state j under the

Influence of action a in one step. This quantity is also

called the transition probability. If an MDP has 3 states

P.Sushma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 56-59

57

and 2 actions, there are 9 transition probabilities per

action.

Immediate Rewards: Usually, the system receives an

immediate reward (which could be positive or negative)

when it transitions from one state to another. This is

denoted by r(i,a,j).

Policy: The policy defined the action to be chosen in

every state visited by the system. Note that in some states,

no actions are to be chosen. States in which decisions are

to be made, i.e., actions are to be chosen, are called

decision- making states. In this tutorial, by states, we will

mean decision-making states.

Performance Metric: Associated with any given policy,

there exists a so-called performance metric — with which

the performance of the policy is judged. Our goal is to

select the policy that has the best performance metric. We

will first consider the metric called the average reward of a

policy. We will later discuss the metric called average

reward. We will assume that the system is run for a long

time and that we are interested in a metric measured over

what is called the Infinite time horizon. Time of transition:

We will assume for the MDP that the time of transition is

unity (1), which means it is the same for every transition.

Hence clearly 1 here does not have to mean 1 hour or

minute or second. It is some fixed quantity fixed by the

analyst. For the SMDP, this quantity is not fixed as we

will see late

Bellman equation

Now that we have the utility and π*, we can actually do an

even better job of writing out π*: π*(s) = argmaxa ∑s' T(s,

a, s') Uπ*(s')

So, the optimal policy of a state is actually to look over all

the actions and sum up the next state's transaction

probability so that the probability ends up in the state’s'.

Now we have the utility of s' following the optimal policy.

The preceding equation says that the optimal policy is one

that, for every state, returns the action that maximizes my

expected utility.

Now, this is rather circular, so it's basically a recursion.

We will go through the exercise later in this chapter where

we figured out the geometric series by effectively doing

recursion. Now, I will write one more equation and we'll

be one step closer to actually seeing it. Of course, if we are

in the infinite horizon with a discounted state, even though

we are one step closer, we won't actually be any closer:

The true utility of the state’s then is the reward that I get

for being in the state; plus, I am now going to discount all

of the reward that I get from that point on.

Once we go to our new state’s', we are going to look at the

utility of that state. It's sort of modular recursion. We are

going to look at overall actions and which action gives us

the highest value of the state; it's kind of like the π*

expression. Once we figure that out, we know what actions

we are going to take in state’s' and we are going to

discount that because it just ups the gamma factor in all

the rewards in the future. Then, we are going to add it to

our immediate reward. In some sense, all I have done is

kept substituting pieces back into one another. So, the true

utility of being in a state is the reward you get in that state

plus the discount of all the rewards you are going to get at

that point, which, of course, is defined as the utility you

are going to get for the states that you see; but each one of

those is defined similarly. So, the utility you will get for s''

will also be further discounted, but since it's multiplied by

gamma that will be gamma squared. Then s''' will be

gamma cubed, so that's just unrolling this notion of utility.

This is a very important equation, called the Bellman

equation. This equation was invented by a Bellman, and in

some scenes it turns out to be the key equation for solving

MDPs and reinforcement learning. It is the fundamental

recursive equation that defines the true value of being in

some particular state. It accounts for everything that we

care about in MDPs. The utilities themselves deal with the

policy that we want, the gammas are discounted, and all

the rewards are here. The transaction matrix is here

representing the actions or all the actions we are going to

take. So basically, the whole MDP is referenced inside of

this and allows us, by determining utilities, to always

know what the best action is of to take. If we can figure

out the answer of the Bellman equation, the utilities of all

the states, as perforce know what the optimal policy is. It

becomes very easy.

Bellman was a very smart guy who took all the neat stuff

of MDPs and put it in a single equation. Let's try to solve

this equation, since it is clearly the key equation, the most

important equation we are going to solve:

Uπ*(s) = R(s) + γ maxa ∑s' T(s, a, s') Uπ*(s')

We wrote this down as the utility of s. We have N states,

which mean this isn't really one equation. y unknowns are

there in the Bellman equation. The R's are known, the T's

are known, so the only things missing are the Us. There

are N equations in N unknowns. If the equation is linear,

then we know how to solve N equations in N unknowns.

We will further look into the solutions of the Bellman

equation in Chapter 3, Dynamic Programming, in the

Value iteration and Policy iteration section.

MDP Framework

• S : states

 • A : actions

• Pr(st+1 | st, at) : transition probabilities = Pr(st+1 | s0 …

st, a0 … at) Markov property

• R(s) : real-valued reward

Find a policy: ∏: S → A

Maximize

• Myopic: E[r t | ∏, st] for all s

• Finite horizon: E[∑kt=0 rt | ∏, s0] – Non-stationary

policy: depends on time

• Infinite horizon: E[∑∞t=0 γtrt | ∏, s0] – 0 < γ < 1 is

discount factor – Optimal policy is stationary

This model has the very convenient property that the

optimal policy is stationary. It’s independent of how long

the agent has run or will run in the future (since nobody

knows that exactly). Once you’ve survived to live another

day, in this model, the expected length of your life is the

same as it was on the previous step, and so your behavior

is the same

Markov Chain

• Markov Chain

• States

P.Sushma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 56-59

58

• Transitions

• Rewards

• No actions

• Value of a state, using infinite

If we set gamma to 0, then the values of the nodes would

be the same as their rewards. If gamma were small but

non-zero, then the values would be smaller than in this

case and their differences more pronounced.

Value Iteration

The value function estimates the expected outcome from

any given state, after any given action. The value function

can be a crucial component of efficient decision-making,

as it summarizes the long-term effects of the agent’s

decisions into a single number. The best action can then be

selected by simply maximizing the value function

Initialize V0(s)=0, for all s

Loop for a while [until kVt –Vt+1k <ε(1-γ)/γ]

Loop for all

s Vt+1(s) = R(s) + maxa γ ∑s0 P(s0 | s, a) Vt(s)

•Converges to V *

 •No need to keep VtvsVt+1

•Asynchronous (can do random state updates)

•Assume we want

•Gets to optimal policy in time polynomial in |A|, |S|, 1/(1-

γ)

State Abstraction

In large worlds,

It is not possible to store distinct value for every individual

state. State abstraction compresses the state in to a smaller

number of features, which are the use in place of the

complete state. Using state abstraction, the value function

can be approximated by a parameterized function of the

features, using many fewer parameters than there are

states. Furthermore, state abstraction enables the agent to

generalize between related states, so that as ingle out come

can update the value of many states.

Temporality

In very large worlds state abstraction cannot usually

provide accurate approximation to the value function. For

example, there are10170 states in 19 × 19 Go. Even if the

agent can store 1010 parameters, It is compressing the

values of 10160statesintoeveryparameter. The dea of

temporality is to focus the agent’s representation on the

current region of the state space – the sub problem it is

facing right now – rather than attempting to approximate

the entire state space

Bootstrapping

Large problems typically entail making decisions with

long-term consequences. Hundreds or thousands of time-

steps may elapse before the final outcome is known. These

outcomes depend on all of the agent’s decisions, and on

the world’s uncertain responses to those decisions,

throughout all of these time-steps. Bootstrapping provides

a mechanism for reducing the variance of the agent’s

evaluation. Rather than waiting until the final outcome is

reached, the idea of bootstrapping is to make can

evaluation based on subsequent valuations. For example

The temporal-difference learning algorithm estimates the

current value from the estimated value at the next time-

step.

Sample-Based Planning

The agent’s experience with its world is limited, and may

not be sufficient to achieve good performance in the

world. The idea of sample-based planning is to simulate

hypothetical experience, using a model of the world. The

agent can use this simulated experience, in place of or in

addition to its real experience, to learn to achieve better

performance.

CONCLUSION

The MDP provided you have the simulator of the system

or if you can actually experiment in the real-world system.

Transition probabilities of the state transitions were not

needed in this approach; this is the most attractive feature

of this approach.

We did not discuss what is to be done for large-scale

problems. That is beyond the scope of this tutorial. What

was discussed above is called the lookup-table approach in

which each Q-factor is stored explicitly (separately). For

large-scale problems, clearly it is not possible to store the

Q-factors explicitly because there is too many of them.

Instead one stores a few scalars, called basis functions,

which on demand can generate the Q-factor for any state-

action pair. Function approximation when done

improperly can become unstable

REFERENCES
[1] Chang, H., Fu, M., Hu, J., and Marcus, S. (2005). An adaptive

sampling algorithm for solving Markov decision processes.

Operations Research, 53(1):126–139.

[2] Chaslot, G., Chatriot, L., Fiter, C., Gelly, S., Hoock, J., Perez, J.,

Rimmel, A., and Teytaud, O. (2008a). Combining expert, online,

transient and online knowledge in Monte-Carlo exploration.In 8th

European Workshop on Reinforcement Learning.

[3] Chaslot, G., Winands, M., Szita, I., and van den Herik, (2008b).

Parameter tuning by the cross entropy method. In 8th European

Workshop on Reinforcement Learning.

[4]. Enzenberger, M. (2003). Evaluation in Go by a neural network

using soft segmentation. In 10th Advances in Computer Games

Conference, pages 97–108.

[5] Ernst, D., Glavic, M., Geurts, P., and Wehenkel, L.(2005).

Approximate value iteration in the reinforcement learning context.

application to electrical power system control. International Journal

of Emerging Electric Power Systems, 3(1).

[6]. Graepel, T., Kruger, M., and Herbrich, R. (2001). Learning on

graphs in the game of Go. In International Conference on Artificial

Neural Networks, pages 347–352. Springer

[7]. Kearns,M.,Mansour,Y.,andNg,A.(2002). As parse sampling

algorithm fornear-optimal planning in large Markova decision

processes. Machine Learning, 49(2- 3):193–208.

[8] Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B.,

Berger, E., and Liang, E. (2004). Autonomous inverted helicopter

flight via Reinforcement learning. In 9th International Symposium

on Experimental Robotics, pages 363–372.

[9] P´eret, L. and Garcia, F. (2004). On-line search for solving Markov

decision processes via heuristic sampling. In 16th European

Conference on Artificial Intelligence, pages 530–534.

[10] S. J. Bradtke and M. Duff. Reinforcement learning methods for

continuous- time Markov decision problems. In Advances in Neural

Information Processing Systems 7.MIT Press, Cambridge, MA,

USA, 1995.

P.Sushma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 56-59

59

