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Abstract:- In machine learning, the environment is formulated as 

a Markov decision process (MDP), as many reinforcement 

learning algorithms for this context utilize dynamic programming 

techniques. The supervised learning and unsupervised learning, 

the paradigm of reinforcement learning deals with learning in 

sequential decision making problems in which there is limited 

feedback. RL is a general class of algorithms in the field   of 

machine learning that aims at allowing an agent to learn how to 

behave in an environment, where the only feedback consists of a 

scalar reward signal. This text introduces the intuitions and 

concepts behind Markov decision processes and two classes of 

algorithms for computing optimal behaviors: reinforcement 

learning and dynamic programming. First the formal framework 

of Markov decision process is defined, accompanied by the 

definition of value functions and policies. The main part of this 

text deals with introducing foundational classes of algorithms for 

learning optimal behaviors, based on several of optimality with 

respect to the goal of learning sequential decisions. Additionally, 

it surveys efficient extensions of the foundational algorithms, 

differing mainly in the way feedback given by the environment is 

used to speed up learning, and in the way they concentrate on 

relevant parts of the problem. For both model-based and model-

free settings these efficient extensions have shown useful in 

scaling up to larger problems. 

 

1.INTRODUCTION 

An MDP is a discrete time-state transition system. MDP is 

actually a reinforcement learning task and it satisfies all 

the requirements of a Markov property. Furthermore, finite 

MDPs or finite MDPs having the finite actions and state 

fulfill the requirement of a Markov property. Finite MDPs 

are mainly important in reinforcement learning. An MDP 

can be described formally with four components:  

 

 A set of possible world states:  

 S A set of possible actions: A(s) or A  

 Model: T(s, a, s') ~ Probability(s'| s, a) 

 A real-valued reward function: R(s) ~ R(s, a) ~ 

R(s, a, s') 

 To understand this framework, we will use the 

Grid World example, as depicted in the following 

 

Table   Grid World 

(1,3) (2,3) (3,3)  

(1,2)  (3,2)  

Smart (2,1) (3,1) (4,1) 

MDP has a set of states; it represents all the states that one 

can be in. In the Grid World example, it has 12 states and 

we can represent them in X and Y coordinates; say, the 

start state is (1,1) or the goal state is (4,4). Actually it 

doesn't matter whether we call these as 1, 2, 3 ...... 12 or 

A,B,C ... L. The point is that there are states that represent 

something and we should know which state we happen to 

be in. We can represent state as s. Action Next are actions-

-things that you can do in a particular state. Actions are the 

things I am allowed to execute when I am in a given state. 

What will be the actions in the Grid World? In the Grid 

World, we can take four types of actions: UP, DOWN, 

LEFT, and RIGHT. The point is that your action set will 

represent all the things that the agent, robot, or person we 

are trying to model is allowed to do. Now, in its 

generalized form, you can think of the set of actions one 

can take as the function state A(s). However, most of the 

time, people just treat it as set of actions or actions that are 

allowed on the particular state and represent it as model. 

The third part of our framework is the model, sometime 

called transition model. It describes the rules of the games 

that apply, or is rather the physics of the world. It's 

basically a function of three variables: state, action, and 

another state. It produces the probability that you end up 

transitioning s' given that you were in state s and you took 

action a. Here, s' is the state where you end up and s and a 

are the given state and action, respectively. In our Grid 

World example, we are at the start state. The probability of 

going up is 0.8, the probability of going right is 0.1, and 

the probability that we end up where we started is 0.1. If 

we sum up all the probabilities, it becomes 1, and that's the 

way it works. The model is really an important thing and 

the reason for its importance is that it describes the rules of 

the game. It tells us what will happen if we do something 

in a particular place. It captures everything we can know 

about the transition: T(s, a, s') ~ Probability(s'| s, a) these 

processes are called Markov, because they have what is 

known as the Markov property. That is, given the current 

state and action, the next state is independent of all 

preceding actions and states. The current state captures all 

that is relevant about the world in order to predict what the 

next state will be. The effects of an action taken in a state 

depend only on that state and not on the prior history.  

Reward:- It is a scalar value that you get from being in a 

state. There are three different definitions of rewards (R); 

sometimes it will be very useful to think about them in 

different ways. R(s) means we get a reward when entering 

into the state. R(s, a) means we get a reward when being in 

a state and taking an action. R(s, a, s') means we get a 

reward when being in a state, taking an action, and ending 

up in a new state. These are all mathematically equivalent 
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but it is easier to think about one form or another: R(s) ~ 

R(s, a) ~ R(s, a, s') the preceding four components define a 

problem; now, we'll look into the solution. The solution to 

the MDP is called policy.  

Policy:-A plan or a result of classical planning can be 

either an ordered list of actions or a partially ordered set of 

actions meant to be executed without reference to the state 

of the environment. When we looked at conditional 

planning, we considered building plans with branches in 

them that observed something about the state of the world 

and acted differently depending on the observation. In an 

MDP, we can assume that it takes only one step to go from 

any one state to another. Hence, in order to be prepared, it 

is typical to compute a whole policy rather than a simple 

plan. A policy is a mapping from states to actions. It says, 

no matter what state you happen to find yourself in, here is 

the action that it's best to take now. Because of the Markov 

property, we'll find that the choice of action needs to 

depend only on the current state (possibly the current time 

as well) and not on any of the previous states. A policy is a 

function that takes state and returns an action. In other 

words, for any given state you are in, it tells you the action 

you should take: π(s) -> a MDP - more about rewards 

Generally, in a reinforcement learning problem, the 

actions of the agent will give not only the immediate 

rewards but also the next state of the environment. The 

agent actually gets the immediate reward and the next 

state, and then agent needs to decide on further actions. 

Furthermore, the agent normally determines how it should 

take the future value into account; it's called model of 

long-run optimality. The agent also has to learn from the 

delayed rewards; it sometimes takes a long sequence of 

actions to retrieve an irrelevant reward and, after some 

time, it reaches a state with a high reward. The agent 

should also learn which of its actions give it a high reward 

based on the past history. This will help decide future 

actions. Let's take an example of a chess game. I played a 

long game of chess and it took 100 moves and at the end I 

lost the game. However, I actually lost the game on the 8th 

move; I made a mistake and reversed two moves because 

it was a new opening that I was just learning. From that 

point on, I played a beautiful game, but the truth is that the 

other player had an advantage that I never overcame. I lost 

the game, not because I played poorly but because I made 

one bad move and that move happened very early. This is 

the notion of a late reward. I played this long game of 

chess and maybe I played well and screwed up in the end. 

Or maybe I played a mediocre game but I had a couple of 

brilliant moves and that's why I won. Or maybe I played 

very well in the beginning and poorly at the end. Or the 

other way round! The truth is that you don't really know; 

all you know is that you take a bunch of actions and you 

get the reward signal back from the environment such as I 

won the game or I lost the game. The action Tuples and 

ultimately we have to figure out what action we took for 

the given state we were in. It helps to determine the 

ultimate sequence of rewards that we saw. This problem is 

called temporal credit assignment. 

Now, we will look into the Grid World example from 

Chapter 1, Reinforcement Learning. Think about how we 

learn to get from the start state to the goal (+1) or failure (-

1) depending on the kind of reward we see. In the Grid 

World example, the only change is in the rewards we 

receive for all states other than the goal (green) and failure 

(red) state. Let's say we give the reward for all the states as 

+2, and goal and failure have rewards of +1 and -1. Just to 

remind you of the rule, the game continues until we reach 

the goal or failure state: R(s) = +2 As the reward is +2, 

which is very high, and the target is to get the maximum 

rewards, in this case we will never get to the goal or 

failure state because the game ends as soon as it has 

reached to these states and that's the end of our treasure 

gathering: 

The framework of the MDP has the following elements:  

1. State of the system, 

2. Actions 

3. Transition probabilities 

4. Transition rewards 

5. A policy 

6. A performance metric. 

We assume that the system is modelled by a so-called 

abstract stochastic process called the Markov chain. 

State: The “state” of a system is a parameter or a set of 

parameters that can be used to describe a system. For 

example the geographical coordinates of a robot can be 

used to describe its “state.” A system whose state changes 

with time is called a dynamic system. Then it is not hard to 

see why a moving robot produces a dynamic system. 

Another example of a dynamic system is the queue that 

forms in a supermarket in front of the counter. Imagine 

that the state of the queuing system is defined by the 

number ofpeople in the queue. Then, it should be clear that 

the state with time, and then this is dynamic system. It is 

to be understood that the transition from one state to 

another in an MDP is usually a random affair. Consider a 

queue in which there is one server and one waiting line. In 

this queue, the state x, Defined by the number of people in 

the queue, transitions to x + 1 with some probability and to 

x−1 with the remaining probability. The former type of 

transition occurs when a new customer arrives, while the 

latter event occurs when one customer departs from the 

system because of service completion. 

Actions: Now, usually, the motion of the robot can be 

controlled, and in fact we are interested in controlling it in 

an optimal manner. Assume that the robot can move in 

discrete steps, and that after every step the robot takes, it 

can go North, go South, go East, or go West. These four 

options are called actions or controls allowed for the robot. 

For the queuing system discussed above, an action could 

be as follows: when the number of customers in a line 

exceeds some Prefixed number, (say 10), the remaining 

customers are diverted to a new counter that is opened. 

Hence, two actions for this system can be described as: (1) 

Open a new counter (2) Do not open a new counter. 

Transition Probability: Assume that action a is selected 

in state i. Let the next state be j. Let p(i,a,j) denote the 

probability of going from state i to state j under the 

Influence of action a in one step. This quantity is also 

called the transition probability. If an MDP has 3 states 
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and 2 actions, there are 9 transition probabilities per 

action. 

Immediate Rewards: Usually, the system receives an 

immediate reward (which could be positive or negative) 

when it transitions from one state to another. This is 

denoted by r(i,a,j). 

Policy: The policy defined the action to be chosen in 

every state visited by the system. Note that in some states, 

no actions are to be chosen. States in which decisions are 

to be made, i.e., actions are to be chosen, are called 

decision- making states. In this tutorial, by states, we will 

mean decision-making states. 

Performance Metric: Associated with any given policy, 

there exists a so-called performance metric — with which 

the performance of the policy is judged. Our goal is to 

select the policy that has the best performance metric. We 

will first consider the metric called the average reward of a 

policy. We will later discuss the metric called average 

reward. We will assume that the system is run for a long 

time and that we are interested in a metric measured over 

what is called the Infinite time horizon. Time of transition: 

We will assume for the MDP that the time of transition is 

unity (1), which means it is the same for every transition. 

Hence clearly 1 here does not have to mean 1 hour or 

minute or second. It is some fixed quantity fixed by the 

analyst. For the SMDP, this quantity is not fixed as we 

will see late 

 

Bellman equation 

Now that we have the utility and π*, we can actually do an 

even better job of writing out π*: π*(s) = argmaxa ∑s' T(s, 

a, s') Uπ*(s') 

So, the optimal policy of a state is actually to look over all 

the actions and sum up the next state's transaction 

probability so that the probability ends up in the state’s'. 

Now we have the utility of s' following the optimal policy. 

The preceding equation says that the optimal policy is one 

that, for every state, returns the action that maximizes my 

expected utility. 

Now, this is rather circular, so it's basically a recursion. 

We will go through the exercise later in this chapter where 

we figured out the geometric series by effectively doing 

recursion. Now, I will write one more equation and we'll 

be one step closer to actually seeing it. Of course, if we are 

in the infinite horizon with a discounted state, even though 

we are one step closer, we won't actually be any closer: 

The true utility of the state’s then is the reward that I get 

for being in the state; plus, I am now going to discount all 

of the reward that I get from that point on. 

Once we go to our new state’s', we are going to look at the 

utility of that state. It's sort of modular recursion. We are 

going to look at overall actions and which action gives us 

the highest value of the state; it's kind of like the π* 

expression. Once we figure that out, we know what actions 

we are going to take in state’s' and we are going to 

discount that because it just ups the gamma factor in all 

the rewards in the future. Then, we are going to add it to 

our immediate reward. In some sense, all I have done is 

kept substituting pieces back into one another. So, the true 

utility of being in a state is the reward you get in that state 

plus the discount of all the rewards you are going to get at 

that point, which, of course, is defined as the utility you 

are going to get for the states that you see; but each one of 

those is defined similarly. So, the utility you will get for s'' 

will also be further discounted, but since it's multiplied by 

gamma that will be gamma squared. Then s''' will be 

gamma cubed, so that's just unrolling this notion of utility. 

This is a very important equation, called the Bellman 

equation. This equation was invented by a Bellman, and in 

some scenes it turns out to be the key equation for solving 

MDPs and reinforcement learning. It is the fundamental 

recursive equation that defines the true value of being in 

some particular state. It accounts for everything that we 

care about in MDPs. The utilities themselves deal with the 

policy that we want, the gammas are discounted, and all 

the rewards are here. The transaction matrix is here 

representing the actions or all the actions we are going to 

take. So basically, the whole MDP is referenced inside of 

this and allows us, by determining utilities, to always 

know what the best action is of to take.  If we can figure 

out the answer of the Bellman equation, the utilities of all 

the states, as perforce know what the optimal policy is. It 

becomes very easy. 

Bellman was a very smart guy who took all the neat stuff 

of MDPs and put it in a single equation. Let's try to solve 

this equation, since it is clearly the key equation, the most 

important equation we are going to solve: 

Uπ*(s) = R(s) + γ maxa ∑s' T(s, a, s') Uπ*(s') 

We wrote this down as the utility of s. We have N states, 

which mean this isn't really one equation. y unknowns are 

there in the Bellman equation. The R's are known, the T's 

are known, so the only things missing are the Us. There 

are N equations in N unknowns. If the equation is linear, 

then we know how to solve N equations in N unknowns. 

We will further look into the solutions of the Bellman 

equation in Chapter 3, Dynamic Programming, in the 

Value iteration and Policy iteration section. 
 

MDP Framework 

• S : states 

 • A : actions  

• Pr(st+1 | st, at) : transition probabilities = Pr(st+1 | s0 … 

st, a0 … at) Markov property  

• R(s) : real-valued reward 

Find a policy: ∏: S → A  

Maximize  

• Myopic: E[r t | ∏, st]  for all s  

• Finite horizon: E[∑kt=0 rt | ∏, s0] – Non-stationary 

policy: depends on time  

• Infinite horizon: E[∑∞t=0 γtrt | ∏, s0] – 0 < γ < 1 is 

discount factor – Optimal policy is stationary 

This model has the very convenient property that the 

optimal policy is stationary.  It’s independent of how long 

the agent has run or will run in the future (since nobody 

knows that exactly).  Once you’ve survived to live another 

day, in this model, the expected length of your life is the 

same as it was on the previous step, and so your behavior 

is the same 

Markov Chain 

• Markov Chain  

• States 
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• Transitions  

• Rewards  

• No actions  

• Value of a state, using infinite  

If we set gamma to 0, then the values of the nodes would 

be the same as their rewards.  If gamma were small but 

non-zero, then the values would be smaller than in this 

case and their differences more pronounced. 
 

Value Iteration  

The value function estimates the expected outcome from 

any given state, after any given action. The value function 

can be a crucial component of efficient decision-making, 

as it summarizes the long-term effects of the agent’s 

decisions into a single number. The best action can then be 

selected by simply maximizing the value function 

Initialize V0(s)=0, for all s 

Loop for a while [until kVt –Vt+1k <ε(1-γ)/γ]  

Loop for all  

s Vt+1(s) = R(s) + maxa γ ∑s0 P(s0 | s, a) Vt(s) 

•Converges to V * 

 •No need to keep VtvsVt+1  

•Asynchronous (can do random state updates)  

•Assume we want  

•Gets to optimal policy in time polynomial in |A|, |S|, 1/(1-

γ) 
 

State Abstraction 

In large worlds,  

It is not possible to store distinct value for every individual 

state. State abstraction compresses the state in to a smaller 

number of features, which are the use in place of the 

complete state. Using state abstraction, the value function 

can be approximated by a parameterized function of the 

features, using many fewer parameters than there are 

states. Furthermore, state abstraction enables the agent to 

generalize between related states, so that as ingle out come 

can update the value of many states. 
 

Temporality 

In very large worlds state abstraction cannot usually 

provide accurate approximation to the value function. For 

example, there are10170 states in 19 × 19 Go. Even if the 

agent can store 1010 parameters, It is compressing the 

values of 10160statesintoeveryparameter. The dea of 

temporality is to focus the agent’s representation on the 

current region of the state space – the sub problem it is 

facing right now – rather than attempting to approximate 

the entire state space 
 

Bootstrapping 

Large problems typically entail making decisions with 

long-term consequences. Hundreds or thousands of time-

steps may elapse before the final outcome is known. These 

outcomes depend on all of the agent’s decisions, and on 

the world’s uncertain responses to those decisions, 

throughout all of these time-steps. Bootstrapping provides 

a mechanism for reducing the variance of the agent’s 

evaluation. Rather than waiting until the final outcome is 

reached, the idea of bootstrapping is to make can 

evaluation based on subsequent valuations. For example 

The temporal-difference learning algorithm estimates the 

current value from the estimated value at the next time-

step. 
 

Sample-Based Planning 

The agent’s experience with its world is limited, and may 

not be sufficient to achieve good performance in the 

world. The idea of sample-based planning is to simulate 

hypothetical experience, using a model of the world. The 

agent can use this simulated experience, in place of or in 

addition to its real experience, to learn to achieve better 

performance. 

 

CONCLUSION 

The MDP provided you have the simulator of the system 

or if you can actually experiment in the real-world system. 

Transition probabilities of the state transitions were not 

needed in this approach; this is the most attractive feature 

of this approach. 

We did not discuss what is to be done for large-scale 

problems. That is beyond the scope of this tutorial. What 

was discussed above is called the lookup-table approach in 

which each Q-factor is stored explicitly (separately). For 

large-scale problems, clearly it is not possible to store the 

Q-factors explicitly because there is too many of them. 

Instead one stores a few scalars, called basis functions, 

which on demand can generate the Q-factor for any state-

action pair. Function approximation when done 

improperly can become unstable 
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