

Smart Crawler

Mrugnayani Sharma1, Dr. Padmapani P. Tribhuvan2

1PG Student, Department of Computer Science and Engineering

Deogiri Institute of Engineering and Management Studies,(DIEMS),Aurangabad, India

mrignayani0142@rediffmail.com

2Assistant Professor, Department of Computer Science and Engineering

Deogiri Institute of Engineering and Management Studies, (DIEMS),Aurangabad, India

padmapanitribhuvan@dietms.org

Abstract: A web crawler is a software program or a structured

script that systematically, automatically browses the world-

wide web. By the use of the graphical layout of the web pages,

web crawlers move from web page to page. Such programs are

additionally kenned as robots, spiders, and worms. In this

system explained further, Data mining algorithms were used

to introduce intelligence into the crawler, system architecture

and performance of developed crawler is compared with

HTtrack which is an opensource crawler. A statistical analysis

of the performance of intelligent crawler is illustrated further.

The data mining algorithm plays an important role when

implementing crawler intelligence. The main goal is to create

an intelligent crawler to serve the function of web indexing,

which, with the aid of search engines, helps to collect relevant

information from the Internet. The proposed intelligent

crawler must perform crawling in minimum time with a

maximum number of results.

keywords: crawler, web indexing, statistical analysis

I. INTRODUCTION

Over the past decade, theweb has grown

exponentially, resulting in the prelude of the massive

amount of data in the virtual world at every instant.

Consequently, the conventional crawling strategy is

eventually becoming inefficient in collecting and indexing

web data. Thus intelligent crawlers must be developed and

used to outperform the ever increasing Internet. Of all the

search engines, web crawlers are an important feature. They

are the basic component of all web services, so they need

high performance to be provided. The crawler is a multi-

threaded bot that runs concurrently to serve the purpose of

web-indexing which helps in gathering relevant

information from over the Internet. This index is utilized by

search engines, digital libraries, p2p communication,

competitive perspicacity and many other industries. We are

introducing intelligent crawler which performs crawling

efficiently. Here the crawler is selective about the pages

fetched and the links it will follow. This selectivity is based

on the interest of the topic of the user thus at each step the

crawler has to make a decision whether the next link will

help to gather the content of interest. Other factors like a

particular topic, the information it had already gathered also

affect the efficiency and performance of the crawler [1].

While introducing perspicacity, two major approaches

dominate the decisions made by the crawler. The first

approach decides its crawling strategy by probing for the

next best link amongst all links it can peregrinate whereas

the second approach computes the benefit of peregrinating

to all links and ranks them, which is utilized to decide the

next link. The main objective is to develop perspicacity in

crawler to accommodate the purport of web-indexing which

avails in amassing pertinent information from over the

Internet with the avail of search engines. The smart crawler

performs crawling in minimum time with a maximum

number of results. An astute web crawling strategy is to be

introduced to improve the efficiency of crawling as web

crawlers search the World Wide Web in a methodical,

automated way. The keenly intellective crawler must

perform crawling in minimum time with maximum number

of URLs crawled as a result [1,2].

II. LITERATURE SURVEY

TYPES OF CRAWLERS

A. Parallel Crawlers

As the web grows in size, it becomes quite difficult or

almost impossible to crawl the whole web by a single

instance of a crawler. Therefore multiple processes are

executed in parallel by search engines to cover the whole

WWW. This type of crawler is referred to as a parallel

crawler [3]. It consists of multiple crawling processes each

of which performs the basic task of a single process crawler.

The web pages are downloaded from the web and are stored

locally. Afterwards, the URLs are extracted and their links

are then followed.

B. Focused Crawlers / Topical crawlers/ Topic driven

crawlers

A focused crawler [3] has three main components a

classifier that takes decisions on the relevancy of a page, a

distiller decides the visit priorities and a crawler which

downloads WebPages and is instructed by classifier and

distiller module.

C. Incremental Web Crawler

The incremental crawler [4,5] continuously crawls the web,

revisiting pages periodically. During its continuous crawl,

it may also purge some pages in the local collection, in order

to make space for newly crawled pages. The crawler has

following two goals:

• To keep the local collection fresh

• To improve quality of the local collection

ISSN:0975-9646ISSN:0975-9646
 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

48

mailto:mrignayani0142@rediffmail.com
mailto:padmapanitribhuvan@dietms.org

D. Hidden Web Crawler

Web crawlers generally crawl the web’s dense tree structure

called the publicly index able Web, i.e., the set of web pages

reachable purely by following hypertext links. The surface

web crawlers ignore search forms and pages that require

authorization or prior registration. In particular, they ignore

the huge amount of high-quality content “hidden” behind

the search for. The Hidden web crawler [3,4], called HiWE

runs in a sequence of steps.

III DEEP WEB CRAWLER’S FRAMEWORK [6]

The fundamental activities of a profound web crawler are

like those of other conventional crawlers [6, 7].In Figure 1

the flowchart demonstrates the normal crawler circle,

comprising of URL choice, page recovery, and page

preparing to extricate joins. Note that customary crawlers

don't recognize pages with and without shapes. The deep

web crawler’s execution sequence contains additional steps

for pages on which forms are detected. Specifically, deep

web crawler performs the following sequence of actions for

each form on a page:

Step 1 Parse and process the form to build an internal

representation, based on the model outlined in Section2.

(Form Analysis)

Step 2 Generate the best (untried) value assignment and

submit a completed form using that assignment.(Value

assignment and submission)

Step 3 Analyze the response page to check if the submission

yielded valid search results or if there were no matches.

This feedback could be used to tune the value assignments

in step 2.(Response Analysis)

Step 4 If the response page contains hypertext links, these

are followed immediately (except for links that have

already been visited or added to the queue) and recursively,

to some pre-specified depth. Note that we could as well

have added the links in the response page to the URL queue.

However, for ease of implementation, in deep web crawler,

we chose tonavigate the response pages immediately and

that too, only up to a depth of 1.(Response Navigation)Steps

2, 3, and 4 are executed repeatedly, using different value

assignments during each iteration. The sequence of value

assignments is generated using the model.

The flowchart in fig. 1 illustrates the complete architecture

of the deep web crawler. It includes six basic functional

modules and two internal crawler data structures. The basic

crawler data structure is the URL List. It contains all the

URLs that the crawler has discovered so far. When starting

up the crawler, the URL List is initialized to a seed set of

URLs.

IV. FUNCTIONS OF A WEB CRAWLER

The web searching process has two main components:

offline and online [8]. The offline part is periodically

performed by the search engine and it is used for building a

collection of pages that will be later converted into a search

index. The online part is executed each time an

interrogation is performed by user. It uses the index for

selecting documents that will later be sorted depending on

estimation on their relevance with regard to the user’s

requirements. A schematic representation of this process is

shown in figure 2.As web pages have different formats, the

first stage for indexing web pages is represented by the

extraction of a set of keywords.

Figure 1: Deep Web Crawler Loop

Figure 2: General structure of a web searching process

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

49

V. ARCHITECTURE OF SMART CRAWLER FOR DEEP

WEB INTERFACES
Smart Crawler consists of two main stages First is Site

Locating and Second is In-site exploring [10]. The figure

below shows the architecture of the proposed system.

Stage 1: Site locating– In Site locating stage the smart

crawler performs the operation to find out the relevant sites

related to the fired query. It has a number of steps involved

to give the final result of this stage.

1) Seed Sites: It is the initial stage of the architecture. Here,

seed sites are the candidate sites which are given to start

crawling. It begins with the following URL of the query and

explores other pages and other domains.

Figure 3: Architecture of smart crawler for deep web

interfaces

2) Reverse searching: Pages with high rank and links to

many other pages is called as a center page of the site. Some

threshold is defined for seed sites, if a number of visited

sited is less than the threshold then Reverse Searching is

performed to know the center pages of the known deep web

sites. Feed these pages back to the site database. The

randomly picked site uses general search engine facility to

find center pages and other relevant sites. Smart crawler

first extract links on the page then download these pages

and analyze these pages to decide whether the links are

relevant or not. Following algorithm is used for reverse

searching:

Algorithm

Input: seed sites and harvested deep websites.

Output: relevant sites.

1 while # of candidate sites less than a threshold do

2 // pick a deep website

3 site = getDeepWebSite(siteDatabase,seedSites)

4 resultP age = reverseSearch(site)

5 links = extractLinks(resultP age)

6 for each link in links do

7 page = downloadPage(link)

8 relevant = classify(page)

9 if relevant then

10 relevantSites = extractUnvisitedSite(page)

11 Output relevantSites

12 end if

13 endfor-each

14 end while

3) Incremental site Prioritizing:Incremental site

prioritizing is used to achieve broad coverage on websites.

It records the learned pattern of deep sites and forms the

path for crawling. Basic knowledge is used to initialize both

rankers such as site ranked and link ranker. Unvisited sites

given to site frontier later prioritize by site ranked and added

to the list fetched site. Two queues are used to classify out

of site links such high priority queue and low priority queue

respectively. High priority queue consist of out of site links

which are classifieds relevant and judge by form classifier

and low priority queue consist of links that are only judged

as relevant. Algorithm for Incremental site Prioritizing is

given below:

Algorithm:

Input: Site Frontier.

Output: searchable forms and out-of-site links.

1 HQueue=SiteFrontier.CreateQueue(HighPriority)

2 LQueue=SiteFrontier.CreateQueue(LowPriority)

3 while siteFrontier is not empty do

4 if HQueue is empty then

5 HQueue.addAll(LQueue)

6 LQueue.clear()

7 end

8 site = HQueue.poll()

9 relevant = classifySite(site)

10 if relevant then

11 performInSiteExploring(site)

12 Output forms and OutOfSiteLinks

13 siteRanker.rank(OutOfSiteLinks)

14 if forms is not empty then

15 HQueue.add (OutOfSiteLinks)

16 end

17 else

18 LQueue.add(OutOfSiteLinks)

19 end

20 end

21 end

3) Site Frontier: Site Frontier fetches the homepage

URLsfrom the site database which is further ranked by Site

Ranker to prioritize the highly relevant sites. Finding out-

of-site links from visited web pages may not be enough for

the Site Frontier.

4) Adaptive link learner: Site ranker and link ranker are

controlled by Adaptive link learner. The feature space is

decided for deep websites and links known as FSS and

FSLrespectively. The Site Ranker is improved during

crawling by an Adaptive Site Learner, which adaptively

learns from features of deep-web sites (websites containing

one or more searchable forms) found. The Link Ranker is

adaptively improved by an Adaptive Link Learner, which

learns from theURL path leading to relevant forms.

5) Site Ranker: Site ranker is used to rank unvisited site

from the deep website. There are two parameters that are

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

50

used for ranking mechanism are Site Similarity and Site

Frequency. Site Similarity depends on the topic similarity

between the known deep site and new site. Site Frequency

is the occurrence of the site in another website.

6) Site Classifier: The high priority queue is for out-of-site

links that are classified as relevant by Site Classifier and are

judged by Form Classifier to contain searchable forms. If

the site is the judge as atopic relevant then site crawling

process is started otherwise the new site is picked from site

frontier.

B. Stage 2: In-Site Exploring –After finding most relevant

sites in stage 1 stage 2 perform the in-site exploration to find

searchable forms.

1) Link Frontier: Link frontier takes sites as inputs which

are classified by site classifier. Link frontier mainly works

for finding links withincenter pages. Criteria for stopping

early are given as Crawling Strategies: Mainly two crawling

strategies are present Stop early and Balance link

prioritizing.

Stop Early:

SC1: when reached maximum depth.

SC2: maximum crawling pages in each depth are reached.

SC3: Predefined numbers of forms are found at each depth.

SC4: No searchable forms till threshold value.

Balance link prioritizing: Here, link tree is constructed. The

rootnode is the selected site and internal leaf node is each

directory present on the website.

2) Link Ranker: Link Ranker prioritizes links so that

SmartCrawler can quickly discover searchable forms. A

high relevance score is given to a link that is most similar

to links that directly point to pages with searchable forms.

3) Page Fetcher: Page Fetcher directly fetches out a center

page of the website.

4) Candidate Frontier: The links in web pages are extracted

into Candidate Frontier. The working of candidate frontier

is similar as site frontier.

5) Form Classifier: Form classifier filters out non-

searchable and irrelevant forms. The HIFI strategy is used

to filter forms. HIFI consists of two classifiers, Searchable

form classifier (SFC)and domain-specific form

classifier(DSFC). SFC is domain independent and it filters

out the non-searchable forms. It uses C4.5 algorithm for

classification. DSFC is domain dependent and finds out the

domain dependent form. Discuses Support vector machine.

6) Adaptive Link Learner: The Link Ranker is adaptively

enhanced by an Adaptive Link Learner, which gains from

the URL way prompting applicable structures.

7) Form Database: Form database contains a collection of

sites; it collects all data which got input from Form

Classifier.

At long last the outcome got is the most significant

structures are acquired in profound web interfaces which

are the coveted aftereffect of the proposed framework.

VI. SYSTEM DEVELOPMENT

By comparing DOM trees of pages with a pre-selected

sample destination page, the earlier crawling system learns

regular expression patterns of URLs that lead a crawler

from an entry page to target pages. It is very efficient and

only works for the particular site where the sample page is

taken from. Every time for a new site the same process has

to be repeated therefore, it is not suitable to large- scale

crawling. The generic crawler started from the entry URL

and a randomly selected non entry URL, respectively. It

ended when no more pages could be retrieved. Nearly 100

percent effectiveness can be accomplished by a crawler

pursuing only index URLs, thread URLs, and page-flipping

URLs. All coverage is equal to about 100 percent when

starting from the entry URL. Coverages declined

dramatically when starting from a no-entry URL. For forum

crawling, an entry URL is important. We suggested IWC as

a smart web crawler that learns URL patterns across

multiple sites and finds the entry page of a forum

automatically given a page from the forum as well as URL

patterns to discover new URLs instead of URL locations

and there is no need to identify new crawling pages and will

not be influenced by a shift in page structures. The

respective results from Google, Bing and IWC showed that

in Google and other web crawlers, the EIT paths and URL

patterns are more stable and promising than the traversal

path and URL location feature. IWC avoids duplicates

URL without duplicate detection by learning patterns of

index URLs, thread URLs, and page-flipping URLs and

adopting a simple URL string de-duplication technique for

example a string hash set.

A. Architecture of our system

Web Crawler is the essential data retrieval source that

crosses the Web and downloads web documents that meet

the needs of the user. The search engine and other users use

the Web crawler to periodically guarantee that their

database is up-to-date. The "focused crawling" technology

is used when only information about a predefined subject

set is needed. The Oriented Crawling technology is

designed for advanced web users to concentrate on unique

subjects compared to other crawling technologies and does

not waste resources on irrelevant materials. An incremental

crawler, on the other hand, incrementally refreshes the

current set of pages by constantly visiting them; based on

the estimation of how much pages shift. It also uses fresh

and more significant pages to swap less important pages.

This addresses the issue of the freshness of the pages. So by

considering the benefits of both incremental and focused

crawler we are going to introduce an intelligent crawler

which can be a combination of both incremental and

focused crawler.

Figure 4: Architecture of our crawler.

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

51

Figure 4 shows the architecture of our smart crawler. It has

two main components: a crawler frontier which stores the

list of URL’s to visit, Page Downloader which download

pages from WWW. Here the basic processes are briefly

outline.

Crawler frontier: - It contains the list of unvisited URLs.

The list is set with seed URLs that a user or another program

will deliver. It's simply a series of URLs. The crawler's

work begins with the URL of the seed. The crawler retrieves

the URL containing the list of unvisited URLs from the

boundary. The page corresponding to the URL is retrieved

from the Web, and the page's unvisited URLs are attached

to the border. Unless the border is empty or some other

condition causes it to stop, the fetching and extracting URL

cycle continues. Extracting URLs based on the

prioritization scheme from the boundary.

Page downloader: - The key task of the page downloader is

to download from the internet the page corresponding to the

URLs obtained from the border of the crawler. To do this,

an HTTP client is required by the page downloader to

submit the HTTP request and to read the response. To

ensure that it does not take extra time to read large files or

wait for a response from a slow server, the timeout duration

must be set by the client. When the HTTP client is actually

introduced, it is restricted to downloading only the first

10KB of a page.

The working of our web crawler is in the sequence as

follows:
 Initializing the seed URL or URLs

 Adding it to the frontier

 Selecting the URL from the frontier

 Fetching the web-page corresponding to that

URLs

 Parsing the retrieved page to extract the URLs

 Adding all the unvisited links to the list of URL

i.e. into the frontier

 Again start with step 2 and repeat till the frontier

is empty.

B. Flow Diagram of our system

The working of web crawler shows that it is recursively

keep on adding newer URLs to the database repository of a

search engine. This shows that the major function of a web

crawler is to add new links into the queue and to choose a

recent URL from it for further processing after every

recursive step. It starts from seed URL i.e starting URL

putting in a queue then gets first URL from the queue, visits

that URL and then saves the documents from that URL after

that it extracts links that are present in the URL and again

adds linked URLs to the the queue. These steps are repeated

till enough documents are gathered. Once all the documents

are gathered it stops crawling.

 Figure 5 shows the flow of stepwise procedure that

carried out during crawling URL.

Figure 5: Functional flow diagram of proposed system.

C. Algorithm: Adaptive A*

The main objective of the dissertation is to develop an

intelligent crawler to serve the purpose of web-crawling

helps in gathering relevant information from over the

Internet. The intelligent crawler must perform crawling in

minimum time with maximum number of results. In BFS

All of the connected vertices must be stored in memory. So

consumes more memory and DFS may not find optimal

solution to the problem and may get trapped in searching

useless path. Also, between searches by arbitrary numbers,

the action costs of an arbitrary number of actions will

increase. In order to concentrate its searches, adaptive A*

uses informed h-values. The consumer provides the initial

h-values which must be compatible with the initial costs of

action. After each search, Adaptive A* updates its h-values

to make them more aware and concentrate even more on

their searches. So, in real-life cases, to estimate the shortest

path, like-in maps, games where there can be several

obstacles.

One of the best techniques used in path-finding and graph

crossings is the Adaptive A* search algorithm. Adaptive A*

uses A* Quest to repeatedly locate the shortest paths. To

speed up the current A* search and to run faster than

Repeated Forward A*, it utilizes its experience with earlier

searches in the series. The role of Adaptive A* is to

repeatedly find cost-minimal paths to a given set of target

states in a given state space with positive action costs. The

searches can vary in their starting states. Adaptive A*

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

52

Search works to concentrate its searches on educated

heuristics. It changes the related value of the page with each

iteration and uses it for the next traversal. The pages are

modified for log(Graph Size) times, the overhead of

updating is much more than the change that can be

accomplished in getting more important pages after

log(Graph Size) times, and then standard A* traversal is

completed.

Adaptive A* Approach is as follows:

1. /*Start with given initial Seed URL as input*/

2. Adaptive_A_Star_Algo(Initial seed, Graph Size)

3. /*No. of times relevancy has to be updated to get

 better results*/

4. b: = log(Graph Size);

5. Repeat For (b times)

6. /*Insert Seed URLs into the Frontier*/

7. Insert_Frontier (Initial seed);

8. /*Crawling Loop*/

9. While (Frontier! = Empty)

10 /*Pick new link from the Frontier*/

11. Link: =Remove_Frontier (URL);

12. Webpage: = Fetch (Link);

13. Repeat For (each child_node of Webpage)

14. /*Calculate Relevancy Valuetill that Page*/

15. Rel_val_gn (child_node):= Rel_val(topic, node

 webpage);

16. /*CalculateRelevancyValuefrom that node till the Goal

 Page*/

17.Rel_val_hn(child_node):=Rel_val(topic,goalwebpage)-

 Rel_val(topic, node webpage);

18. /*Calculate Total Relevancy Value of the Path to the

 Goal Page*/

19. Rel_val_fn:= Rel_val_gn+Rel_val_hn;

20. /*Add new link with Maximum Relevancy Value into

 Frontier*/

21. Insert_Frontier (child_node_max, Rel_val_max);

22. End While Loop

23. /*After b times, A* Search more efficient on updated

 graphs*/

24. A_Star_Algo(seed URL, Graph (G));

At each iteration of its main loop, A* needs to determine

which of its partial paths to expand into one or more longer

paths. Specifically, A* selects the path that minimizes

where n = last node on the path g(n) = the cost of the path

from the start node to n h(n) = a heuristic that estimates the

cost of the cheapest path from n to the goal.

VII. PERFORMANCE ANALYSIS

The main objective of the dissertation is to develop an

intelligent crawler to serve the purpose of web-indexing

which helps in gathering relevant information from over the

Internet with the help of search engines. The proposed

intelligent crawler must perform crawling in minimum time

with maximum number of results.

A. Performance Measures

 Following are some performance measures to

evaluate performance of a crawler:

 Time efficiency: Crawler should be time efficient i.e.

crawler should crawl the maximum URLs in minimum

time span. Time efficiency can be measured as

Running Time for our crawler.

 Number of URLs crawled: Number of URLs crawled

should maximum in less time.

 Harvest Rate/Links tested: This rate estimates the rate

of crawled pages that form relevance linking to the

topic amongst all the pages that have been crawled.

 HTTrack offers functions well suited for uploading an

entire website to your PC as a website crawler

freeware. It has versions available for Windows, Linux,

and other Unix systems, which covers most users. You

can get the photos, files, and HTML code from its

mirrored website and resume interrupted downloads.

HTTrack works as a command-line program, or

through a shell for both private (capture) and

professional (on-line web mirror) use. With that said,

HTTrack should be preferred and used more by people

with advanced programming skills.

 So, we are going to compare our crawler’s performance

with the HTtrack on the basis of Running Time as a

performance parameter. As shown in table we feed the

same seed URLs to HTtrack and our crawler and the

results are different and as we can see our crawler gives

somewhat better results than HTtrack.

TABLE I

 RUNNING TIME OF SMART CRAWLER AND HTTRACK

Figures below shows the graphs of HTtrack and our crawler

comparison on the basis of Running Time for 5 different

URLs. In figure 6 url: https://docs.microsoft.com is crawled

and HTtrack takes 6mins:44secs for crawling the URL

whereas our crawler takes 3mins:08secs. In figure 7

url:https://www.britannica.com/ is crawled and HTtrack

takes 6mins:44secs for crawling the URL whereas our

crawler takes 3mins:08secs.

Figure 6: Running Time of HTtrack And Smart Crawler

For https://docs.microsoft.com

0:00

1:12

2:24

3:36

4:48

6:00

7:12

WinHTtrack Our Crawler

https://docs.microsoft.com

https://docs.microsoft.com

URL’s HTtrack Our Crawler

https://docs.microsoft.com 6min:44sec 3min:08sec

https://www.britannica.com/ 13min:40sec 12min:05sec

http://fabvisitingcard.in/panel

/login

0min:19sec 0min:10sec

https://www.stackmint.com/in

dex.php

0min:56sec 0min:22sec

http://www.intellspot.com/op

en-source-web-crawlers/

2min:16sec 1min:04sec

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

53

https://docs.microsoft.com/
https://www.britannica.com/
https://docs.microsoft.com/
https://docs.microsoft.com/
http://fabvisitingcard.in/panel/login
http://fabvisitingcard.in/panel/login
https://www.stackmint.com/index.php
https://www.stackmint.com/index.php

Figure 7: Running Time of HTtrack And Smart Crawler

For https://www.britannica.com/

In figure 8 url: http://fabvisitingcard.in/panel/login is

crawled and HTtrack takes 0mins:19secs for crawling the

URL whereas our crawler takes 0mins:10secs. In figure 9

url: For https://www.stackmint.com/index.php is crawled

and HTtrack takes 0mins:56secs for crawling the URL

whereas our crawler takes 0mins:22secs. In figure 10 url:

http://www.intellspot.com/open-source-web-crawlers/is

crawled and HTtrack takes 2mins:16secs for crawling the

URL whereas our crawler takes 1mins:04secs.

Figure 8: Running Time of HTtrack And Smart Crawler

For http://fabvisitingcard.in/panel/login

Figure 9: Running Time of HTtrack And Smart Crawler

For https://www.stackmint.com/index.php

Figure 10: Running Time of HTtrack And Smart Crawler

For http://www.intellspot.com/open-source-web-crawlers/

VIII. CONCLUSION AND FUTURE SCOPE

The web crawler will visit web pages on the Internet and

index both new and existing web pages. The search engines

use a series of crawling algorithms. The primary objective

of the web crawling algorithm is to extract the URL from

the crawled web pages. A successful crawling algorithm for

better outcomes and high performance is implemented here.

As it performs features of both, SmartCrawler is a mix of

both focused crawler and incremental crawler. Our

experimental findings indicate the efficacy of the smart

crawler, which is higher than other crawlers in minimum

running time.

In future work, the scalability of the device and the

behaviour of its component can be worked on to enhance

the speed and accuracy of web crawling work. While the

initial findings are promising, there is still a lot of work to

be done to increase the quality of crawling. For potential

work, extension testing with large volumes of web pages is

a big open problem.

Code optimization and URL queue optimization are also

included in future work, as crawler performance is not only

based on achieving the maximum number of web pages.

ACKNOWLEDGEMENT

I offer my thanks towards my guide Dr. Ms. Padmapani P.

Tribhuvan in light of his direction I have finished my work

attractively

.

REFERENCES
[1] https://en.wikipedia.org/wiki/Web_crawler

[2] AbhirajDarshakar, Crawler intelligence with Machine Learning and

Data Mining integration, Pune Institute of Computer Technology,

Katraj, Pune, India (ICCCA2015) ISBN:978-1-4799-8890-

7/15/$31.00 ©2015 IEEE 849

[3] Shruti Sharma and Parul Gupta, The Anatomy of Web Crawlers

ISBN:978-1-4799-8890-7/15/$31.00 ©2015 IEEE

[4] Cho, J. and Garcia-Molina, H. 2003. Estimating frequency of

change.ACM Transactions on Internet Technology 3, 3 (August).

[5] Cho J and Hector Garcia-Molina, “The evolution of the Web and

implications for an incremental crawler”, Prc. Of VLDB Conf., 2000.

[6] Xiang Peisu, TianKe and Huang Qinzhen, A Framework of Deep

Web Crawler.

[7] JUNGHOO C, HECTOR GM, and LAWRENCE P. Efficient

crawling through URLordering. Proceedings of the Seventh

[8] MirelaPirnau, Considerations on the functions and importance of a

web crawler, ECAI 2015 - International Conference – 7th Edition

11:02

11:31

12:00

12:28

12:57

13:26

13:55

WinHTtrack Our Crawler

https://www.britannica.com/

https://www.britannica.com/

0:00

0:02

0:05

0:08

0:11

0:14

0:17

0:20

WinHTtrack Our Crawler

http://fabvisitingcard.in/panel/login

http://fabvisitingcard.in/panel/login

0:00

0:14

0:28

0:43

0:57

1:12

WinHTtrack Our Crawler

https://www.stackmint.com/index.php

https://www.stackmint.com/index.php

0:00

0:28

0:57

1:26

1:55

2:24

WinHTtrack Our Crawler

http://www.intellspot.com/open-source-
web-crawlers/

http://www.intellspot.com/open-source-web-crawlers/

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

54

http://fabvisitingcard.in/panel/login
https://www.stackmint.com/index.php
http://fabvisitingcard.in/panel/login
https://www.stackmint.com/index.php
http://www.intellspot.com/open-source-web-crawlers/
https://en.wikipedia.org/wiki/Web_crawler

Electronics, Computers, and Artificial Intelligence 978-1-4673-

6647-/15/$31.00©2015 IEEE

[9] Keerthi S. Shetty, SwarajBhat and Sanjay Singh, Symbolic

Verification of Web Crawler Functionality and Its Properties, 2012

International Conference OnComputerCommunication and

Informatics (ICCCI -2012), Jan.10–12,2012, Coimbatore, INDIA

[10] Feng Zhao, Jingyu Zhou, Chang Nie, Heqing Huang, Hai Jin,

SmartCrawler: A Two-stage Crawler for Efficiently Harvesting

Deep-Web Interfaces,DOI 10.1109/TSC.2015.2414931, IEEE

Transactions on Services Computing.

 Mrugnayani Sharma et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 12 (2) , 2021, 48-55

55

