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Abstract -The rapid advance of computer based high-
throughput technique have provided unparalleled 
opportunities for humans to expand capabilities in 
production, services, communications, and research. 
Meanwhile, immense quantities of high-dimensional 
data are accumulated challenging state-of-the-art 
data mining techniques .The intelligent analysis of 
Databases may be affected by the presence of 
unimportant features, which motivates the 
application of Feature Selection. By treating this task 
as a search and optimization process, it is possible to 
use the synergy between Genetic Algorithms and 
Multi-objective Optimization to carry out the search 
for (quasi) optimal subsets of features considering 
possible conflicting importance criteria. This work 
presents an application of Multi-objective Genetic 
Algorithms to the Feature Selection problem, 
combining different criteria measuring the 
importance of the subsets of features. 
 
Keywords -Feature importance measures, Filter 
feature selection, Multi-objective Genetic Algorithm. 
 

I INTRODUCTION 
 
Data mining is a multidisciplinary effort to extract 
nuggets of knowledge from data. The proliferation 
of large data sets within many domains poses 
unprecedented challenges to Data Mining (DM) 
[1]. Not only are data sets getting larger, but new 
types of data have also evolved, such as data 
stream on the Web, microarrays in genomics and 
proteomics, and networks in social computing and 
system biology. Technological advances have 
allowed the acquisition and storage of a growing 
volume of information. The intelligent analysis of 
these data by processes like data mining is 
extremely useful, as they make possible to 
construct computational models (hypothesis) that 
give support to specialists during decision making 
[1]. 

Feature Selection (FS) is one of the tasks 
usually performed during DM with the goal of 
identifying important features subsets in a Database 
(DB) [2]. Among other motivations, FS allows the 
obtainment of less complex models and that 
potentially have also equal or higher quality when 
compared to the models constructed using all 
features. In addition, it allows a better 
understanding of the data domain, by means of the 
identification of the features that, apparently, better 
describe the embedded patterns. In high-

dimensional domains, another benefit is the 
reduction of the effects of the curse of 
dimensionality [1], [3]. Search for important 
features subsets is, in general, combinatorial, as the 
search space contains all the possible combinations 
of the investigated features. This fact motivates the 
use of heuristic search methods such as Genetic 
Algorithms (GA) [4].  

Based on the Darwinian Theory of 
Evolution and on genetics, GA conducts genetic 
operations between a set of possible solutions to 
the search and optimization problem. Following 
these principles, solutions that optimize a given 
fitness function, which reflects the goal to be 
optimized, tend to proliferate, while solutions of 
low quality tend to vanish.  

A formulation of FS as a search and 
optimization process can be obtained by defining 
important features subsets as optimal solutions 
from an optimization problem that maximizes or 
minimizes a function referent to a criterion of 
importance of the features as their correlation to the 
data classes. The simultaneous optimization of 
multiple criteria allows to define important features 
subsets considering distinct aspects, although this 
may become complex when these goals are 
conflicting. Herewith, Multi-objective 
Optimization (MO) strategies become necessary 
[5]. MO is constituted by mathematical and/or 
algorithmic mechanisms that define one or more 
equivalently optimal solutions that attend to 
distinct tradeoffs among the considered goals. The 
combined use of GA and MO define the Multi- 
Objective Genetic Algorithms (MOGA), which are 
capable of performing the search of a group of 
solutions guided by the simultaneous optimization 
of multiple criteria or goals. MOGA have been 
applied to different domains and tasks, among 
which is FS [6], [7], [8], [9]. Differently from 
previous related work, in this work we apply 
MOGA in FS considering distinct combinations of 
criteria measuring the importance of subsets of 
features. All criteria employed use information 
extracted from data only.  

The work is organized as follows: in 
Section II concepts related to FS are described; the 
considered feature importance measures are drawn 
in Section III; Section IV describes the proposed 
approach for FS, which is based on the use of 
MOGA; Section V shows practical experiments 
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involving the proposed framework; conclusions of 
this work are presented in Section VI. 
 

II . FEATURE SELECTION 
 
The importance of features in a DB may be defined 
in terms of different criteria, which usually take in 
account the relevance and/or non redundancy of the 
investigated features [10], [11], [3]. In the context 
of supervised learning, i. e., sets of examples that 
have a class attribute, a feature may be defined as 
relevant if it is important for the discrimination of 
the classes. Considering classification problems, in 
which the interest is to extract a model that 
describes the relation between the features and their 
classes, a feature is relevant when a worse 
predictive performance is obtained when this 
feature is not used. On the other hand, two features 
are considered non redundant if their values are not 
significantly correlated [2].  
Generally, the choice of the features is carried out 
through the evaluation of their individual 
importance or considering subsets of features. 
Techniques for individual evaluation usually are 
not able to remove redundant features, as they tend 
to present the same importance for discriminating 
the classes [10]. Thereby, in this work FS is 
performed considering two aspects: (1) application 
of importance measures considering feature 
subsets and (2) application of individual evaluation 
measures which are then combined into a unique 
resultant value, representing at the end a subset of 
features as a whole.  
The existent FS methods may be mainly 
characterized according to their interaction with the 
pattern extraction algorithm [2]. Wrapper FS 
algorithms evaluate the importance of features 
subsets based on the models generated by pattern 
extraction algorithms, while filter FS algorithms 
consider general properties extracted from the data 
set, such as statistical measures. The algorithm 
developed in this work belongs to the filter 
approach and includes measures of consistency, 
dependency, distance and information, which are 
described next. 

 
 

III. IMPORTANCE MEASURES 
 
Distinct measures for quantifying the importance of 
features are found in the literature. Usually, it is 
possible to characterize them as measures of 
consistency, dependency, distance, information or 
precision [3]. In supervised data, the concept of 
consistency corresponds to the non occurrence of 
one or more pairs of examples of different classes 
with identical values for the same feature [12]. 
Therefore, measures of consistency search for 
features which enable the construction of logical 
consistent hypothesis. The Inconsistent Example 

Pairs (IP) measure proposes the identification of 
the inconsistency ratio given by the Equation 1 
[12]. 
 

IP ൌ ୬୳୫ୠୣ୰ ୭୤ ୧୬ୡ୭ୱ୧ୱ୲ୣ୬୲ ୣ୶ୟ୫୮୪ୣ ୮ୟ୧୰ୱ୬୳୫ୠୣ୰ ୭୤ ୣ୶ୟ୫୮୪ୣ ୮ୟ୧୰ୱ              (1) 

 
Criteria based on dependency measure the 

capability of predicting the value of one feature 
from the value of another feature. Thereby, these 
measures enable the analysis of the redundancy 
present in data. Equation 3 [9] presents the 
dependency measure Attribute Class Correlation 
(AC) [13], in which xj (i) is the value of feature i in 
the example j, n corresponds to the number of 
examples, m is the number of features, where i = 
{1….,m}  and j = {1,…. n}. The weight  i assumes 
value 1 or 0, respectively, if i is or is not selected 
and φ(..,..)=1 if j1 and j2 belong to different classes 
or φ (...,) = 0.05 otherwise, while ║║denotes the 
module function. 
 
 
AC= ﴾∑࢝iC(i) ﴿/﴾∑࢝i ﴿   )2(  
  

Where C(i) =  
∑ ║ ௫ೕభ  ሺ௜ሻି௫ೕమ  ሺ௜ሻ ║ఝ﴾௫௝ଵ,௫௝ଶ﴿ೕభಯೕమ ௡ሺ௡ିଵሻ/ଶ  

Distance measures allow investigating 
aspects like proximity between examples that have 
some relation and separation between examples 
without relation. The Intra-Class Distance (IA) and 
the Inter-Class Distance (IE) [9] exemplifies this 
category estimating, respectively, the density of 
examples from a specific class and the separability 
between the classes when the data set is described 
only by the subset of features being investigated. 
These measures are formulated according to 
Equations 3 and 4 [9], in which ݌௝௥ denotes the j-th 
example from class r, p corresponds to the central 
example of the data set, d(.,.) denotes the Euclidean 
distance, and pr e nr  represent, respectively, the 
central example and the number of examples in 
class r. 
 

IA = 
ଵ௡ ∑ ∑ ݀൫݌ ௝௥, ௥൯௡ೝ௝ୀଵ௞௥ୀଵ݌      (3) 

 

IE = 
 ଵ௡ ∑ ݊௥݀ሺ݌௥,௞௥ୀଵ p)             (4) 

 
Another example of distance-based 

measure is the Laplacian Score (LS) [14], which is 
founded on the observation that, in many 
classification problems, examples with the same 
class are relatively next to each other. The 
calculation of this measure for each feature i is 
based on the Laplacian graph L, which is defined 
with the help of a nearest neighbor graph that 
models the local space structure where the 
examples  are located. Equation 6 [14] presents the 
formulation of LS, where x (i) = [x1 (i) ; x2 (i) ,…, 
xn (i)]

T , 1 = [1,… 1]T and the matrices D and L are 
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defined as D = diag (S1), in which diag() extracts 
the diagonal of a matrix, and L = D-S, considering 
S as the weight matrix of the edges that connect 
nearest neighbors. 
 
 

LS (i)       =       
     ௫෤ሺ௜ሻ೅ ௅௫෤ሺ௜ሻ௫෤ሺ௜ሻ೅   ஽௫෤ሺ௜ሻ   (5) 

Where  ݔ෤ ൌ ሺ݅ሻݔ  െ ௫ሺ௜ሻ ೅஽ଵଵ೅஽ଵ        
                

Information measures, such as 
Representation Entropy (RE) [15], enable to 
investigate the distribution of information between 
the features and, consequently, to estimate the 
involved redundancy [16]. RE may be defined from 
the covariance matrix of order m as formulated in 
Equation 7 [16], where the Eigen value associated 
with feature i is denoted by . Although the 
analysis performed by this measure has relation 
with the dependency analysis, it is worth 
emphasizing that in RE the information is the main 
concept estimated for each feature. The aim is 
reduce the uncertainty of the problem under 
investigation. This justifies the classification of RE 
as a measure of information. 
 
 
RE= - ∑ Ւప ෪ Ւప෩ ݃݋݈     (6) 
 

Where Ւ෨௜ = 
Ւ೔∑ Ւ೔ 

 
Measures of the precision category may 

consider information such as the accuracy rate of a 
model in the classification of the examples 
described by the subset of features investigated and 
other performance estimates, being commonly used 
by FS techniques of the wrapper category. 
 

IV. MOGA IN FEATURE SELECTION 
 
Genetic Algorithms (GA) can be employed quite 
directly to FS [17], [18], [9]. Each individual in this 
case is represented by a binary chromosome 
containing m genes, where each gene represents 
one of the m features. A value 1 at a specific 
position i implies the selection of feature i, while 
the value 0 indicates that it was not selected. From 
an initial population containing several random 
individuals representing different subsets of 
features, the GA searches for a subset that 
optimizes some importance measure of these 
features according to some of the criteria discussed 
in the previous section. 
 

However, it may be interesting to combine 
different criteria of importance in the evaluation of 
subsets of features, as a way to exploit 
complementarities in their definitions and also to 
employ different properties in the selection of 

features. Herewith, we have different objectives to 
be optimized, which are often conflicting. In this 
scenario, the use of MOGA is fully justified. 
 

In this work we used the Non-dominated 
Sorting Genetic Algorithm (NSGA-II) MOGA in 
the FS problem, which is based on the theory of 
Pareto for multi-objective optimization and was 
also used in related work [17], [18], [9]. This 
theory allows the optimization of multiple goals in 
order to obtain a frontier of diverse possible 
solutions [5]. We considered the simultaneous 
optimization of different combinations of 
importance criteria of the subsets of features we 
chose at least one measure to represent each 
category of importance measures, which were 
discussed in the previous section, except from the 
accuracy category, more related to wrapper 
approaches.  
 

Each measure was calculated on data sets 
represented only by the features selected by the 
MOGA in a particular individual. Therefore, we 
obtain the evaluation of the subset of features s 
represented in this individual. While most of the 
measures meets the aspect (1) reported in Section 
II, LS is the only measure that addresses the aspect 
(2). We chose to apply LS to each feature that 
makes up s and use the average value obtained as 
the final value for this measure in the given subset.  
 
Although the simultaneous optimization of all six 
measures is possible, MOGA based on the Pareto 
theory generally scale poorly in optimization 
problems with four or more objectives, among 
other problems [19]. The complementarities 
between the six measures can be analyzed by the 
optimization of pairs of objectives. The 
computational cost for optimizing pairs of 
importance measures is lower than the cost 
associated with the optimization of more goals. 
These facts motivated to optimize only two 
measurements per experiment in this work. 
Considering all possible pairs of six measures, we 
obtain 15 different multi objective configurations.  
 

The investigation of many configurations, 
considering combinations between different types 
of importance measures, distinguishes this work 
from others as [17], [18], [9]. Unlike all the recent 
work discussed in [20], which implement measures 
belonging to the wrapper approach, the measures 
used in this work all belong to the filter approach. 
Overall, the filter approach tends to have a lower 
computational cost than the wrapper approach [2].  

NSGA-II was implemented considering as 
genetic operators one-point crossover and bit-flip 
mutation [4]. The selection of individuals for 
reproduction was performed using a binary 
tournament. NSGA-II returns a set of optimal 
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solutions representing different tradeoffs between 
the objectives considered. To select a single 
solution in this work, we used the Compromise 
Programming (CP) technique, as described in [21]. 
 

V. EXPERIMENTAL EVALUATION 
 

We conducted a series of experiments to 
evaluate the use of the MOGA described in Section 
IV on data sets from the UCI benchmark1 [22], 
chosen from related work. The experiments were 
performed with the aid of the Platform and 
Programming Language Independent Interface for 
Search Algorithms (PISA) [23], which implements 
NSGA-II, and of the GNU Scientific Library 
(GSL) [24] for calculating the covariance matrix 
required by RE. The J48 algorithm, an 
implementation of C4.5 decision tree [25] available 
in Weka 3.6.1 [26], was used to generate models 
for data classification. We opted for this classifier 
because of its relatively low computational cost and 
its small number of parameters. 

 
 

TABLE I DATA SETS INFORMATION 
 

 #Example #Features  
(nominal+continuous) 

#classes MCE 

D 
I 
S 
V 
W 

358 
351 
208 
846 
178 

34(34+0) 
34(2+32) 
60(0+60) 
18(0+18) 
13(2+11) 

6 
2 
2 
4 
3 

31.01 
64.10 
53.37 
25.77 
39.89 

 

The data sets used were: Dermatology 
(D), Ionosphere (I), Sonar (S), Vehicle (V) and 
Wine (W). Table I presents their number of 
examples, features and classes and also their 
Majority class Error (MCE) rates. 

In order to evaluate the subsets of features 
selected by the MOGA in each case, we generated 
classification models on projections of the data sets 
containing the features chosen and compared the 
results of these models against those obtained using 
all the features present in each data set. A 
projection consists in building a new data set with 
the same set of examples, but containing only the 
features referenced in the investigated subset. 

In all experiments, NSGA-II was applied 
with the following parameters: alpha = 50, mu = 
50, lambda = 50, crossover rate = 0.8, mutation rate 
= 0.01, stopping criterion = 50 generations, where 
alpha, mu and lambda correspond, respectively, to 
the population size and the number of parents and 
the number of children 
after crossover. As already mentioned, we have 
investigated combinations of different criteria 
measuring the importance of features: IA, IE, AC, 
IP, LS and RE pairs, totaling 15 multi objective 
settings. 

In the experiments, each data set was 
initially divided according to the stratified 10-fold 

cross-validation method, resulting in 10 pairs of 
training and test sets. The MOGA is run three times 
on each training data set partition, since its results 
are stochastic. Given a specific partition i of a data 
set d, we then obtain three subsets of features. For 
each of the subsets, a projection of the pair 
training/test i is built. A classification model for 
each projection is generated using the training set 
obtained, which is tested in the corresponding test 
partition. We then have, for each combination of 
criteria of importance in a data set d, 30 accuracy 
rates from three runs of 10 fold cross-validation. 
The outcome of the MOGA using a specific 
combination is then given by the average of these 
30 runs. Classification models using the data sets 
with all the features were generated as baselines, 
using the same cross-validation partitions. In this 
case, the average reported refers then to the 10 runs 
of cross-validation. 

A.Results 
 

Table II depicts the average accuracy rate 
obtained by the classification models induced, their 
standard deviation and also the average percentage 
of reduction in the original amount of features in 
the data sets (third column from TableI) and 
standard deviation associated (in parentheses) for 
each combination of importance criteria. Each line 
represents a distinct classifier, while the columns 
correspond to the datasets. It is worth noting that 
the FS performed internally by J48 was not 
investigated in this work, so the number of features 
presented refers to the size of the subsets identified 
by the MOGA. 

We also made experiments involving the 
use of the IA measure. Nevertheless, there were 
very sharp reductions in the numbers of features 
and the classifiers built thereafter 
showed a deteriorated predictive performance. 
Therefore, the results related to this particular 
measure are not presented in Table II.  

We applied the statistical test of Friedman 
[27], separately by data set, to identify if there was, 
with 95% of confidence, a significant difference in 
accuracy among the classifiers resulting from the 
use of MOGA and the baseline Ca. The cells 
marked in bold indicate cases that showed 
significantly better predictive performance 
compared to the baseline classifier, while cells in 
italics and underlined indicate cases where the 
baseline accuracy was significantly better. 

B. Discussion  
In general, the classifiers employing IE 

combinations stand out in terms of accuracy in all 
data sets. IE + IP and IE + RE settings shared 
accuracy and average number of features similar to 
the baseline. In fact, these settings often kept 
virtually all the features in the data sets. The 
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combinations IE + AC and IE + LS also present, in 
most cases, similar accuracy to the baseline, but 
using less features. An exception occurred in the 
Sonar data set, where we have a better predictive 
performance when compared to the baseline, which 
was statistically significant with p - value < 0.001. 
Other combinations, such as AC + IP, AC + RE 
and IP + RE, also stand out in some of the data 
sets. 

This shows the importance of considering 
the distance between examples of different classes 
for FS. Features that allow higher separability of 
data can contribute for a better predictive 
performance of the induced classifiers. Combining 
the analysis of other types of measures, such as 
dependence inherent in the data set investigated, it 
becomes possible to select important features in 
terms of other aspects, reducing the complexity of 
the models, while obtaining equal or higher 
accuracy in data classification. For instance, while 
two or more features may be equivalent regarding 
one measure of importance, the consideration of 
another measure 
may provide further information for selecting 
among them. 

Regarding the number of selected features, 
there were generally greater reductions in the 
combinations involving the AC and LS measures. 
In some cases these reductions have been very 
aggressive and led to a deterioration of the 
predictive performance of the subsequent models 
generated. On the other hand, combinations with IE 
(especially IE + IP and IE + RE) were more 
conservative, reducing less the numbers of features. 
It is interesting therefore to note the synergy of the 
combination of IE with AC and LS, where it was 
possible to obtain good reductions in the numbers 
of features, while the accuracy rates obtained were 
maintained and even improved in some situations.  

It is worth noting that in many cases it was 
possible to obtain models with equivalent 
predictive performance to the baseline classifier, 
while using a lower number of features, 
representing the obtainment of models of lower 
complexity. Table II highlights with the symbol 
“*” cases where there was a significant reduction in 
the number of features, above 50%, while the 
models had accuracy rates similar or even better 
than those obtained when using all features. 

All measures employed in this work 
belong to the filter approach, which tends ensure a 
lower computational cost when compared to 
wrapper approaches [2]. As observed in Table II, 

despite not using any precision importance 
measure, it was possible to obtain classifiers with 
predictive performance similar or superior to the 
baseline, which uses all features. 
 

We conclude that the MOGA is a useful 
method for FS when combining multiple criteria of 
importance of the subsets of features, due to the 
benefits of GA and MO. While the GA has enabled 
the simultaneous optimization of a set of solutions, 
MO allowed the combined investigation of 
measures that reflect different aspects of the data 
sets to select important features. 

 
VI. CONCLUSION 

 
This work presented an implementation of 

a MOGA for FS in classification problems. 
Different multiobjective configurations were tested, 
in which the goals correspond to different measures 
of importance of the features. Experimentally, in 
several cases it was possible to build models with 
reduced numbers of features and good predictive 
performance, especially in combinations IE + AC, 
IE + LS and IP + LS. 

The combinations involving the Inter-
Class Distance measure resulted in relatively 
higher accuracy rates in all data sets. Thus, it 
becomes interesting to investigate further this 
criterion in later experiments that combine up to 
three objectives simultaneously and with more data 
sets. The cardinality of subsets of features handled 
by the MOGA can also be included as an additional 
objective to be minimized. It is also proposed as 
future work the use of other classifiers to minimize 
any influences of a specific classifier in the 
evaluation of the MOGA. An additional study also 
includes the comparison of the proposed MOGA 
with other techniques for FS described in the 
literature and also with single objective GA 
involving each of the importance measures 
separately. We can also consider in future the fact 
that the measures LS and RE do not use the class 
attribute to perform FS and can be directly 
employed to unlabeled data. 
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TABLE II CLASSIFICATION RESULTS 

 D I S V W 

 
IE  + AC 

91.03  ± 4.71 
(23.14±1.17) 

90.32 ± 5.48 
(32.16±1.2 ) 

81.91  ± 8.65 
(57.33± 2.36)* 

72.43 ± 4.21 
(6.85±0.43) 

93.24 ± 4.98 
(37.69± 0.96) 

 
IE  + IP 

93.28  ± 5.02 
(0±0) 

90.89 ± 5.15 
(1.37±0.51) 

69.56 ± 8.89 
(4.78± 1.5) 

74 ± 5.11 
(0± 0) 

92.12 ± 6.32 
(0± 0) 

 
IE  + RE 

94.11  ± 4.97 
(1.76±0.62)

90.6 ± 5.35
(7.06±0.62)

73.08 ± 10.47
(10.22± 1.11)

73.96 ± 5.1 
(0.19± 0.18) 

92.12 ± 6.32
(0± 0)

 
IE  + LS 

90.67  ± 5.75 
(33.53±0.93) 

90.68 ± 6.28 
(67.84±1.6 )* 

80.93  ± 11.5 
(63.72± 1.96)* 

72.74 ± 3.62 
(14.07± 0.68) 

89.35 ± 13.94 
(64.62± 1.22)* 

 
AC + IP 

62.75 ± 7.5 
(85.39±0.56) 

90.3 ± 6.4 
(87.94± 0.55)* 

72.67 ± 7.79 
(90.44± 0.94)* 

69.99 ± 4.09 
(62.59± 0.45) 

89.93 ± 5.55 
(78.46± 0.41)* 

 
AC + RE 

93.46  ± 4.81 
(40.59±1.35) 

90.6 ± 5.14 
(29.71± 1.24 

73.41 ± 8.48 
(22.39± 2.76) 

63.84 ± 4.78 
(88.89± 0) 

90.02 ± 7.03 
(69.74± 0.25)* 

 
AC + LS 

65.38 ± 2.35 
(94.12±0) 

81.46 ± 7.41 
(96.47± 0.41) 

72.02 ± 8.44 
(96.22± 0.83)* 

52.49 ± 5.62 
(94.44± 0) 

83.1 ± 7.37 
(88.46± 0.51) 

 
IP + RE 

96.08  ± 4.47 
(52.35±0.48)* 

91.27 ± 5.18 
(21.08± 0.79) 

73.88 ± 8.5 
(27.61± 1.19) 

67.62 ± 4.01 
(76.3± 0.64) 

77.48 ± 9.9 
(69.23± 0) 

 
IP + LS 

80.73 ± 2.74 
(71.67±1.03) 

90.02 ± 4.38 
(89.61± 0.51)* 

72.67 ± 9.06 
(92.72± 0.85)* 

68.44 ± 3.36 
(63.33± 0.93) 

89.31 ± 3.98 
(83.85± 0.31)* 

 
RE  + LS 

88.99± 6.14 
(43.73±1.41) 

90.98 ± 5.08 
(35.98± 1.17) 

74.04 ± 10.01 
(30.94± 2.11) 

52.49 ± 5.62 
(94.44± 0) 

87.61 ± 9.52 
(69.23± 0)* 

 
Ca 93.28  ± 5.2 90.89 ± 5.34 70.21 ± 9.81 74 ± 5.3 92.12 ± 6.55 
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