

Genetic Algorithms and Programming-An

Evolutionary Methodology

T. Venkat Narayana Rao1 , Srikanth Madiraju2

Computer Science and Engineering,

 Hyderabad Institute of Technology and Management, Hyderabad, A P, India.

Abstract: Genetic Programming (GP) is an automated method
for creating a working computer program from a high-level
problem statement for a given problem. Genetic programming
starts from a high-level statement of “what needs to be done”
and to automatically create a computer program to solve the
problem. In artificial intelligence, genetic programming (GP)
is an evolutionary algorithm-based methodology inspired by
biological evolution to find computer programs that perform a
user defined task. It is a specialization of genetic algorithms
(GA) where in each individual is a computer program. It is a
machine learning technique used to optimize population of
computer programs according to a fitness span determined by
a program's ability to perform a given computational task.
This paper presents an idea pertaining to the principles of
genetic programming which includes relative effectiveness of
mutation, crossover, breeding computer programs and fitness
test in genetic programming. The literature of traditional
genetic algorithms contains related studies, but through GP, it
saves time by freeing the human from having to design
complex algorithms. GP not only help in designing the
algorithms but it could assist in creating the optimal solutions
than traditional counterparts in a noteworthy ways.

Keywords: Genetic Programming, subtree, chromosomes,
mutation, Evolutionary.

 I. INTROUCTION

Way back in1954, the first work on Genetic Programming
has initiated, highlighting the basic functionality of all the
four basic aspects viz... Breeding, Mutation, Crossover and
Fitness test. Genetic Programming (hence forth referred as
GP) began with the evolutionary algorithms firstly
developed by Fogel Owens and Walsh was applied to
evolutionary simulations as given in table 1. During 1960s
and early 1970s, evolutionary algorithms became widely
recognized as optimization methods. Genetic programming
addresses the problem of automatic programming, namely,
the problem of how to enable a computer to do useful things
without instructing it, step by step, on how to do it. The first
statement of modern "tree-based" Genetic Programming i.e.,
procedural languages organized in tree-based structures and
operated on by suitably defined GA-operators was given by
Nichael L. Cramer (1985). Koza has argued that mutation is
in fact useless in Genetic Programming because of the

position-independence of GP subtrees, and because of the
large number of chromosome positions in typical Genetic
Programming populations [Koza 1992, pp. 105–107]. This
paper shows the merits of application of the basic aspects of
Genetic Programming that have proved more efficient is
generating a good algorithms and pool of programs for
better delivery of results[12]. The whole discussion lies in
the advantage of utility of these major points in modern
computations and algorithm writing. In the 1990s, GP was
mainly used to solve relatively simple problems because it
is very computationally intensive. Recently GP has
produced many novel and outstanding results in areas such
as quantum computing, electronic design, game playing,
sorting and searching due to improvements in GP technology
and the power[6][8]. These results include the replication or
development of several post-year-2000 inventions. GP has
also been applied to evolvable hardware as well as computer
programs. The history of computer programming is a
history of attempts to move away from the "craftsman"
approach - structured programming, object-oriented
programming, object libraries and rapid prototyping. But
each of these advances leaves the code that does the real
work firmly in the hands of the programmer. The ability to
enable computers to learn to program themselves is utmost
importance in freeing the computer industry and the
computer user from code that is obsolete before it is
released. Since the 1950s, computer scientists have tried,
with varying degrees of success, to give computers the
ability to learn. The umbrella term for this field of study is
"machine learning" a phrase crafted in 1959 by the first
person Samuel, who made a computer perform a serious
learning task. Originally, Samuel used "machine learning"
to mean computers programming themselves [Samuel,
1963]. That goal has, for many years, proven too difficult.
So the machine learning community has pursued more
modest goals. A good contemporary definition of machine
learning is due to Mitchell’s study of computer algorithms
that improve automatically through experience [Mitchell,
1996]. Genetic programming, aspires to do precisely that -
to induce a population of computer programs that improve
automatically as they experience the data on which they are
trained. Accordingly, GP has become the part of very large
body of research called machine learning. Developing a
theory for GP has been very difficult and so in 1990s GP

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

427

was considered a sort of outcast among search techniques.
But after a series of breakthroughs in the early 2000s, the
theory of GP had a formidable and rapid development, so
much so that it has been possible to build exact probabilistic
models of GP (schema theories and Markov chain models).
Genetic Programming is an extension of the Genetic
Algorithm which was invented by John Holland (1975).
Although the idea of evolving programs was first suggested
by Forsyth (1981) and Cramer (1985) among others, it was
proved, promoted and developed into a practical tool by
John Koza. Genetic Programming is one technique amongst
a whole range of possible evolutionary algorithms [3].

What Machine Learning
Although genetic programming is a relative newcomer to
the world of machine learning, some of the earliest
machine learning research bore a distinct resemblance to
today's GP. In 1958 and 1959, Friedberg attempted to solve
fairly simple problems by teaching a computer to write
computer programs [Friedberg, 1958] [Friedberg et al.,
1959]. Friedberg's programs were 64 instructions long and
were able to manipulate bitwise, a 64-bit data vector. Each
instruction had a virtual "opcode" and two operands, which
could reference either the data vector or the instructions.
An instruction could jump to any other instruction or it
could manipulate any bit of the data vector. Friedberg's
system learned by using a modern mutation operator -
random initialization of the individual solutions and
random changes in the instructions. The process of
machine learning that is, defining of the environment and
the techniques for letting the machine learning system
experience the environment for both training and
evaluation are surprisingly similar from system to system.
In the next section of this chapter, we shall, therefore, focus
on machine learning as a high-level process. In early
1980s, machine learning was recognized as a distinct
scientific discipline. Since then, the field has grown
tremendously. Systems now exist that in narrow domains,
learn from experience and make useful predictions about
the world. Today, machine learning is termed as an
important part of real-world applications such as industrial
process control, robotics control, time series prediction,
prediction of credit worthiness and pattern recognition
problems such as optical character recognition and voice
recognition. At the highest level, any machine learning
system faces a similar task - how to learn from its
experience of the environment [1][4].

 Table 1: Summary of evolutionary algorithms

The whole field is now called Evolutionary Computation. In
common with many search techniques, the Genetic
Programming algorithm has three basic components.
 A population of candidate solutions (usually called
genes or chromosomes).
 A set of operations (genetic operators) which act on
members of this population to produce new solutions [9].
 A method for evaluating how good each solution is,
which involves trying it out in an appropriate environment.

In Genetic Programming, each candidate solution is stored
in the form of a tree structure. Two examples of these trees
are shown in here i.e. Figure 1. The first of these might be
interpreted as a function i.e. p = 2.107p + 0.345 and the
second as the logical expression (agent-4 saidYes) OR
(agent-3 DidBetterThan me). Initially, the population of
candidate solutions is generated randomly from a
specification of the possible nodes and terminals which can
be used to construct a legal tree.

Figure 1. Example of Genetic Programming solution being stored in tree
 pattern.

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

428

Different problems in artificial intelligence, symbolic
processing, and machine learning can be viewed as wanted
discovery of a computer program that results in some
desired output for particular inputs being fed. In this new
genetic programming, pool of computer programs are
genetically bred using “the Darwinian principle of survival”
of the fittest and using a genetic crossover (recombination)
operator appropriate for genetically mating computer
programs.
A. Breeding features:

 Attributed features:
-competes with neural nets and alike

 -needs huge populations (thousands).
 Special features :

-non-linear chromosomes: trees, graphs, Computer
Programs as Trees.
- Mutation possible but not necessary (disputed!) .

Start off with a large “pool” of random computer programs.
Need a way of coming up with the best solution to the
problem using the programs in the “pool”. Based on the
definition of the problem and criteria specified in the fitness
test, mutations and crossovers are used to come up with new
programs which will solve the problem further.

For example: IF (NOC = 2) AND (S > 80000) THEN
good ELSE bad
can be represented by the following tree:
IF formula THEN good ELSE bad . Only unknown is
the right formula, hence our search space
(phenotypes) is the set of formulas i.e. Natural
fitness of a formula: percentage of well classified
cases of the model it stands for
Natural representation of formulas (genotypes) is:
parse trees

The Trees are a universal form. We can represent an equation in
the form of a tree for a given example below :

 Tree based representation:

 (x  true)  ((x  y)  (z  (x  y)))

In GA, ES, EP chromosomes are linear structures (bit
strings, integer string, real-valued vectors, and
permutations). Tree shaped chromosomes are non-linear
structures. In GA, ES, EP the size of the chromosomes is
fixed. Trees in Genetic Programming may vary in depth and
width.

B. The Fitness Test Function
Identifying the way of evaluating how good a given
computer program is at solving the problem at hand [11]
[12]. How good can a program cope with its environment?
Can be measured in many ways, i.e. error, distance, time,
complexity etc.

 Fitness Test Criteria;
 Time complexity a good criteria i.e. n2 vs. nlogn.
 Accuracy - Values of variables.
 Combinations of criteria may also be tested.

Fitness is the measure used by GP during simulated
evolution of how well a program has learned to predict the
output(s) from the input(s) i.e. the features of the learning
domain. The goal of having a fitness evaluation is to give
feedback to the learning algorithm regarding which
individuals should have a higher probability of being
allowed to multiply and reproduce, which individuals

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

429

should have a higher probability of being removed from the
population. The fitness function is calculated on what we
have earlier referred to as the training sets. Continuous
Fitness Function, the fitness function should be designed to
give graded and continuous feedback about how well a
program performs on the training set. There are also other
methods for calculating fitness.
In co-evolution methods for fitness evaluation [Angeline
and Pollack, 1993][Hillis, 1992], individuals compete
against each other without an explicit fitness value. In a
game-playing application, the winner in a game may be
given a higher probability of reproduction than the loser. In
some cases, two different populations may be evolved
simultaneously with conflicting goals. For example, one
population might try to evolve programs that sort lists of
numbers while the other population tries to evolve lists of
numbers that are hard to sort. This method is inspired by
arms races in nature where, for example, predators and prey
evolve together with conflicting goals. In some cases, it
might be advantageous to combine very different concepts
in the fitness criteria. We could add terms for the length of
the evolved programs or their execution speed, etc. Such
fitness function is referred to as a multiobjective fitness
function.

Each individual in a population is allotted with a fitness
value as a result of its communication with the environment.
Fitness is the driving force of Darwinian natural selection
and, similarly to genetic algorithms. The environment is a
set of cases which provides a basis for evaluating the fitness
of the S expressions in the population. For example, for the
exclusive-or function, the obvious choice for the
environment is the set of four combinations of possible
values for the two variable atoms D0 and D1 along with the
associated value of the exclusive-or function for the four
such combinations. For most of the problems described
herein, the raw fitness of any LISP S-expression is the sum
of the distances between the point in the range space
returned by the S-expression for a given set of arguments
and the correct point in the range space. The S-expression
may Boolean-valued, integer-valued, real-valued, complex-
valued, vector valued, multiple-valued, or symbolic-valued.
If the S-expression is integer-valued or real-valued, the sum
of distances is the sum of absolute values of the differences
between the numbers involved. In particular, the raw fitness
r(i,t) of an individual LISP S-expression i in the population
of size M at any generational time step t is :

 r(i,t) =Ne

 S(i,j) [Ex-Or] C(j)
 j=1

Where S (i,j) is the value returned by S-expression i for
environmental case j (of Ne environmental cases) and where
C(j) is the correct value for environmental case j. If the S-
expression is Boolean-valued or symbolic-valued, the sum
of distances is equivalent to the number of mismatches. If
the S-expression is complex-valued, or vector-valued, or

multiple valued, the sum of the distances is the sum of the
distances separately obtained from each component of the
vector or list. The closer this sum of distances is to zero, the
better is the S-expression.
One can use the sum of the distances or the square root of
the sum of the squares of the distances in this computation.
It is important that the fitness function return a range of
various values that distinguish the performance of single
entities in the pool. As an example, a fitness function test
that returns only two values (say, a true for a solution and a
false otherwise) provides not enough information for
helping guide to an adaptive process. Any outcome that is
discovered with such a fitness function test is, then,
essentially can be an accident (a false return). A wrong
choice of the function set in relation to the number of
environment cases for a given case can raise the same
situatution. For example, if the Boolean function OR is in
the function set for the exclusive-or problem, this function
alone satisfies three of the four environment cases. Since the
initial random population of individuals will almost
certainly be numerous S-expressions equivalent to the OR
function, we are effectively left with only two distinguishing
levels of the fitness (i.e. 4 for a solution and 3 otherwise).

The process of solving some typical problems can be
reframed as a search for a most fit individual computer
program in the range of possible computer programs. In
particular, the search Space is the hyperspace of LISP
symbolic expressions (called S-expressions) encapsulating
functions and terminals appropriate to the problem domain.
As noticed, the LISP S-expression which solves each of the
problems described above will surface from a simulated
evolutionary process using a new genetic programming
paradigm using a "hierarchical genetic algorithm”.
The functions may be standard arithmetic operations,
standard programming operations, standard mathematical
functions and various domain-specific functions[10]. A
fitness function evaluates how well each individual LISP S-
expression in the population performs in the particular
problem environment. In many problems, the fitness is
measured by the sum of the distances i.e. taken for all the
environmental cases between the point in the range space
(whether Boolean-valued, integer-valued, real-valued,
complex-valued, vector-valued, symbolic valued, or
multiple-valued) created by the S-expression for a given set
of arguments and the correct point in the range space. An
algorithm based on the Darwinian model of reproduction
and survival of the fittest and genetic recombination is used
to create a new population of individuals from the current
population of individuals.
The two participating parental S-expressions are selected in
proportion to fitness. The resulting offspring S-expressions
are composed of sub expressions "building blocks" from
their parents. Then, the new population of offspring i.e. the
new generation replaces the old population of parents, the
old generation. Then, each individual in the new population
is measured with the fitness function and the process is
repeated. At every level of this highly parallel, locally

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

430

governed, and defragmented process, the state of the process
will include only of the current population of individuals.
Moreover, the only input to the algorithmic process will be
the observed fitness of the individuals in the current
population in correlation with the problem environment.
This algorithm will produce populations which, over a
period of generations, intend to show increasing average
fitness in dealing with their environment, and which, in
addition, will tend to robustly i.e. rapidly and effectively
adapt and work accordingly to the changes in their
environment. The solution produced by this algorithm at
any given time can be viewed as the entire population of
distinctive alternative solutions (typically with improved
overall average fitness as compared to the beginning of the
algorithm), or, more commonly, as the single best individual
in the population at that time. The hierarchical character of
the computer programs that are produced by the genetic
programming paradigm is an important characteristic of the
genetic programming. The results of this genetic
programming methodology process are inherently
hierarchical.
The dynamic variability of the computer programs that are
developed along the way to a solution is also an important
feature of the genetic programming paradigm. In each case,
it would be difficult and unnatural to try to specify or limit
the size and shape of the eventual solution in advance.
Moreover, the advance specification or restriction of the size
and shape of the solution to a problem narrows the window
by which the system views the world and might well
prohibit finding the solution to the problem.
Another important feature of the genetic programming
paradigm is absence of preprocessing of inputs and the fact
that the solution is expressed directly in terms of the
functions and arguments from the problem domain. This
makes the results immediately comprehensible and
intelligible in the terms of the problem domain. Most
importantly, the "genetic programming" paradigm is general
and provides a single, unified approach to a variety of
seemingly different problems in a variety of areas.

 II. THE CROSSOVER (RECOMBINATION)
 OPERATION

Crossing over, process in genetics by which the two
chromosomes of a homologous pair swap equal segments
with each other. Crossing over occurs in the first division of
meiosis. At that stage each chromosome has replicated into
two strands called sister chromatids[5]. The two
homologous chromosomes of a pair synapse, or come
together. While the chromosomes are synapsed, breaks
occur at corresponding points in two of the non-sister
chromatids, i.e., in one chromatid of each chromosome[1].
Since the chromosomes are homologous, breaks at
corresponding points mean that the segments that are broken
off contain corresponding genes, i.e., alleles. The broken
sections are then exchanged between the chromosomes to
form complete new units, and each new recombined
chromosome of the pair can go to a different daughter sex

cell as shown in Figure 2. Crossing over results in
recombination of genes found on the same chromosome,
called linked genes that would otherwise always be
transmitted together. Because the frequency of crossing over
between any two linked genes is proportional to the
chromosomal distance between them, crossing over
frequencies are used to build genetic, or linkage, maps of
genes on chromosomes.

 Figure2.Chromosomes Pairs and Genetic Recombinations

There are three principal constraints on biological crossover:

 Biological crossover takes place only between
members of the similar species. In fact, living
creatures put much energy into identifying other
members of their species - often putting their own
existence at risk to do so. Bird songs, for example,
attract mates of the same species and predators.

 Biological crossover occurs with remarkable
attention to preservation of "semantics”. Thus,
crossover usually results in the same gene from the
father being matched with the same gene from the
mother. In other words, the hair color gene does
not get swapped for the tallness gene[2].

 Biological crossover is homologous. The two
DNA strands are able to line up identical or very
similar base pair sequences so that their crossover
is perfect almost down to the molecular level. But
this does not eliminate crossover at duplicate gene
sites or other variations, as long as very similar
sequences are available.

In nature, most crossover events are successful i.e. they
result in viable offspring. This is a sharp contrast to GP
crossover, where over 75% of the crossover events are what
would be termed in biology "lethal”. What causes this
difference? In a sense, GP takes on an enormous task. It
must evolve genes (building blocks) so that crossover makes
sense and it must evolve a solution to the problem all in a
few hundred generations. It took nature billions of years to
come up with the preconditions so that crossover itself
could evolve. GP crossover is very different from biological
crossover. Crossover in standard GP is unconstrained and

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

431

uncontrolled. Crossover points are selected randomly in
both parents. There are no predefined building blocks
(genes). Crossover is expected to find the good building
blocks and not to disorder them even while the building
blocks grow.

 In the basic GP system, any subtree may be crossed
over with any other subtree. There is no
requirement that the two subtrees fulfill similar
functions. In biology, because of homology, the
different alleles of the swapped genes make only
minor changes in the same basic function.

 There is no requirement that a subtree, after being
swapped, is in a context in the new individual that
has any relation to the context in the old individual.
In biology, the genes swapped are swapped with
the corresponding gene in the other parent.

 Were GP to develop a good subtree building block,
it would be very likely to be disrupted by crossover
rather than preserved and spread. In biology,
crossover happens mostly between similar genetic
materials. It takes place so as to conserve gene
function with only minor changes.

There is no reason to suppose that randomly initialized
individuals in a GP population are members of the same
species-they are created randomly.

Crossovers in Programs:

The crossover (recombination) operation for the genetic
programming paradigm creates variation in the population
by producing offspring’s that combine traits from two
parents. The crossover operation starts with two parental S-
expressions and produces at least one offspring S-
expression. In general, at least one parent is chosen from the
population with a probability equal to their respective
normalized fitness values. In this paper, both parents are so
chosen. The operation begins by randomly and
independently selecting one point in each parent using a
Probability distribution. Note that the number of points in
the two parents typically is not equal.
 Two parental programs are selected from the population
based on fitness.
 A crossover point is randomly chosen in the first and
second parent.
 The sub tree rooted at the crossover point of the first, or
receiving, parent is deleted and replaced by the sub tree
from
 the second, or contributing, parent.
 Crossover is the predominant operation in genetic
programming (i.e. genetic algorithm) work and is performed
with a
 high probability that is about 85% to 90%.

The "crossover fragment" for a particular parent is the
rooted sub-tree whose root is the crossover point for that
parent and where the sub-tree consists of the entire sub-tree
lying below the crossover point (i.e. more distant from the
root of the original tree). Viewed in terms of lists in LISP

programming language , the crossover fragment is the sub-
list starting at the crossover point [4].
The first offspring is produced by deleting the crossover
fragment of the first parent from the first parent and then
impregnating the crossover fragment of the second parent at
the crossover point of the first parent. In producing this first
offspring the first parent acts as the base parent (the female
parent) and the second parent acts as the impregnating
parent (the male parent). The second offspring is produced
in a symmetric manner as shown in example1.

EXAMPLE1:
For example, consider the two parental LISP S-expressions
below:

In terms of LISP S-expressions, the two parents are (OR
(NOT D1) (AND D0 D1)) and

(OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT D1))

Assume that the points of both trees above are numbered in
a depth-first way starting at the left. Suppose that the second
point (out of the 6 points of the first parent) is selected as
the crossover point for the first parent and that the sixth
point (out of the 10 points of the second parent) is selected
as the crossover point of the second parent. The crossover
points are therefore the NOT function in the first parent and
the AND function in the second parent. Thus, the bold,
underlined portions of each parent above are the crossover
fragments. The two crossover fragments are shown below:

Note that the first offspring above is a perfect solution for
the exclusive-or function, namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

432

Note that because entire sub-trees are swapped, this genetic
crossover (recombination) operation produces valid LISP S-
expressions as offspring regardless of which point is
selected in either parent. If the root of one tree happens to be
selected as the crossover point, the crossover operation will
insert that entire parent into the second tree at the crossover
point of second parent. In addition, the sub-tree from the
second parent will, in this case, then become the second
offspring. If the roots of two parents happen to be chosen as
crossover points, the crossover operation simply degenerates
to an instance of fitness proportionate reproduction on those
two parents.

If a terminal is located at the crossover point in precisely
one parent, then the sub-tree from the second parent is
inserted at the location of the terminal in the first parent and
the terminal from the first parent is inserted at the location
of the sub-tree in the second parent. In this case, the
crossover operation often has the effect of increasing the
depth of one tree and decreasing the depth of the second
tree. If terminals are located at both crossover points
selected, the crossover operation merely swaps these
terminals from tree to tree [7] [12].

 III. MUTATION IN NATURE

Mutations can involve large sections of DNA becoming
duplicated, usually through genetic recombination. These
duplications are a major source of raw material for evolving
new genes, with tens to hundreds of genes duplicated in
animal genomes for million years and have following
characteristics.

 Ultimate source of genetic variation.
 Radiation, chemicals change genetic
 information.
 Causes new genes.
 One chromosome.
 Asexual.
 Very rare combinations possible.

A gene mutation is a permanent change in the DNA
sequence that makes up a gene. Mutations range in size
from a single DNA building block (DNA base) to a large
segment of a chromosome. Gene mutations occur in two
ways: they can be inherited from a parent or acquired during
a person’s lifetime. Mutations that are passed from parent to
child are called hereditary mutations or germ line mutations
(because they are present in the egg and sperm cells, which
are also called germ cells). This type of mutation is present
throughout a person’s life in virtually every cell in the body.
Figure 3. showcases a example involving crossover and
mutation process for a inducting assembler .
Somatic also called as acquired mutations occur in the DNA
of individual cells at some time during a person’s life. These
changes can be caused by environmental factors such as
ultraviolet radiation from the sun, or can occur if a mistake
is made as DNA copies itself during cell division. Acquired
mutations in somatic cells (cells other than sperm and egg
cells) cannot be passed on to the next generation.

Figure 3. example showing a mechanism in crossover and mutuation to

induce an assembler.

Some genetic changes are very rare, others are common in
the population. Genetic changes that occur in more than 1 %
of the population are called polymorphisms [6] [1] [9]. They
are common enough to be considered a normal variation in
the DNA. Polymorphisms are responsible for many of the
normal differences between people such as eye color, hair
color, and blood type. Although many polymorphisms have
no negative effects on a person’s health, some of these
variations may influence the risk of developing certain
disorders. Mutations can involve large sections of DNA
becoming duplicated, usually through genetic
recombination.
Entropy driven variation, such as mutation, is the principal
source of variability in evolution. There are many types of
mutation, including [Watson and Wonklhofer et al., 1987]
as given below:
 Changes from one base pair to another are a possibility.

These often produce neutral or useful variations.
Although a base pair switch occurs about once every
ten million replications or less, there are hot spots
where base pair switching is up to twenty-five times the
usual rate.

 Additions or deletions of one or more base pairs. This is
called a frame shift mutation and often has drastic
consequences on the functioning of the gene.

 Large DNA sequence rearrangements. These may occur
for any number of reasons and are almost always lethal
to the organism.

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

433

Mutation operates on only one individual. Normally, after
crossover has occurred, each child produced by the
crossover undergoes mutation with a low probability. The
probability of mutation is a parameter of the run. A separate
application of crossover and mutation, however, is also
possible and provides another reasonable procedure. When
an individual has been selected for mutation, one type of
mutation operator in tree GP selects a point in the tree
arbitrarily and replaces the existing subtree at that point with
a new randomly generated subtree. The new randomly
generated subtree is created in the same way, and subject to
the same limitations (on depth or size) as programs in the
initial random population. The altered individual is then
located back into the population. In linear GP, mutation is a
bit different. When an individual is chosen for mutation, the
mutation operator first selects one instruction from that
individual for mutation. It then makes one or more changes
in that instruction. The type of change is chosen randomly
from the following list:

 Any of the register designations may be changed to

another randomly chosen register designation that is in
the register set.

 The operator in the instruction may be changed to
another operator that is in the function set.

 A constant may be changed to another randomly chosen
 constant in the designated constant range.

Mutations in Programs:
 Single parental program is probabilistically selected
 from the population based on fitness.
 Mutation point randomly chosen. the sub tree rooted at
 that point is deleted, and a new subtree is grown there
 using the same random growth process that was used
 to generate the initial population.
 Asexual operations are typically performed sparingly
 (with a low probability of, probabilistically selected
 from the population based on fitness).
 Most common mutation: replace randomly chosen sub
 tree by randomly generated tree.

 Mutation has two parameters: Probability pm to choose
mutation vs. recombination and the Probability to choose an
internal point as the root of the sub tree to be replaced.
Remarkably pm is advised to be 0 (Koza’92) or very small,
like 0.05 (Banzhaf et al. ’98). The size of the child can
exceed the size of the parent. The below subtrees shows the
parent and child patterns in detail.

 Parent1 Parent2

 Child1 Child2

The mutation operation potentially can be beneficial in
reintroducing diversity in a population that may be tending
to prematurely converge.

IV. APPLICATIONS OF GENETIC PROGRAMMING

The detailed summary of applications of Genetic
Programming domain is listed in the table 2. and Tables 3.

A. Designing Electronic Circuits
John Koza, a professor at Stanford and CEO of Genetic
Programming Inc. is perhaps the person most responsible
for making GP more acceptable in the eyes of the AI
community. He and his team have successfully applied
genetic programming techniques to a variety of applications
ranging from bioinformatics to distributed systems. One of
their most successful endeavors has been to the generation
of electronic circuit designs. Here, the programs are actually
all about the flow of information around the circuits, so the
function set contains functions which mimic the actions of
transistors, resistors, etc., on the flow of electricity.

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

434

According to the web site at Genetic Programming Inc:
"there are now 36 instances where genetic programming has
automatically produced a result that is competitive with
human performance, including 15 instances where genetic
programming has created an entity that either infringes or
duplicates the functionality of a previously patented 20th-
century invention, 6 instances where genetic programming
has done the same with respect to a 21st-century invention,
and 2 instances where genetic programming has created a
patentable new invention”.

B. Evolutionary Art
One of the most exciting and creative areas in which genetic
programming is being is applied is evolutionary art. In
contrast to most GP applications, in evolutionary art, the
user often acts directly as the fitness function. That is, the
GP engine generates a set of programs which can produce
images (i.e. JPEG's etc.), either by transforming a given
image, or generating pixel data from scratch. These images
are then shown to the user, who performs the selection by
choosing those which they most like. The GP engine then
generates a population from the chosen images and selects
from it images which fairly closely resemble the ones
chosen by the user, or which have some properties similar to
the chosen ones, e.g., color distribution. The user then
selects those with most appeal again, and the process
continues until the user is so happy with the image that they
put it on their homepage. The evolutionary art community
includes many artists and computing professionals, and the
artworks their programs produce generate much interest
(similar to how everyone was amazed by fractal images
when they first came out). Such an approach was recently
used to generate images for an ad-campaign by Absolute
Vodka, for example.

 Table 2. : Applications of Genetic Programming

Table 3.:Science Oriented Applications of
Genetic Programming

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

435

 CONCLUSION

The data presented in this paper is formulated on various
studies and research work carried out, presenting various
examples that explain in detail about the aspects of genetic
programming. The final analysis of the data indicates that
crossover is more successful than mutation overall, though
mutation is often better for small populations, depending on
the domain. However, the difference between the two is
usually small, and often statistically insignificant. Apart
from its straightforward instrumental uses, the study of GP
opens up a new and wide range of possibilities for social
simulators that of models based on a learning technique
where the structure of what is learnt. It is a methodology
that can be used to generate some aspects of the creative
learning caliber of humans. Of course, the GP algorithm is
not a perfect mirror of human cognition. To be used
effectively as a descriptive element in a social simulation, it
needs to be adapted to ensure that it is as realistic as
possible. GP is not yet a completely mature technique. As

such, its impact in the field of social simulation has just
begun. No doubt its impact will be at least as great as those
of previous paradigms such as neural networks or genetic
algorithms. It introduces a new computational analogy but
because it is unparalleled as a creative computational
technique thus we anticipate that in the days to come GP
would be applied and we may be genuinely surprised at the
results.

 REFERENCES

[1] Andre, D. and Teller, A. 1996. A Study in Program Response and
 the Negative Effects of Introns. In Genetic Programming. In
 Proceedings of the First Annual Conference on Genetic
 Programming (GP96), edited by John Koza et al.The MIT Press.
 pp. 12–20.
[2] Angeline, P.J. 1996. Two Self-Adaptive Crossover Operators for
 Genetic Programming. In Advances in Genetic Programming 2,
 edited by P.J. Angeline and K.E. Kinnear, Jr. The MIT Press. pp.
 89– 109.
[3] Koza, J.R. 1992. Genetic Programming: On the Programming of
 Computers by Means of Natural Selection.. The MIT Press.Koza,
 J .R. 1994.
[4] Genetic Programming II: Automatic Discovery of Reusable
 Programs. The MIT Press.Mitchell, M. 1996. An Introduction to
 Genetic Algorithms.TheMIT Press.
[5] Shaffer, J.D., and L.J. Eshelman. 1991. On Crossover as an
 Evolutionarily Viable Strategy. In Proceedings of the Fourth
 International Conference on Genetic Algorithms, edited by R.K.
 Belew and L.B. Booker. Morgan Kaufmann.
[6] Genetic programming from tiera.ruW Banzhaf, JR Koza, C Ryan, L
 Spector, C Jacob - 1998 - bib.tiera.ru
[7] Genetic programming and redundancy T Blickle, L Thiele - 1994 –
 Citeseer
[8] Discovery of subroutines in genetic programming JP Rosca, DH
 Ballard - 1996 – Citeseer.
[9] Genetic programming: A paradigm for genetically breeding
 populations of computer programs to solve problems. JR Koza –
 Soucek and the IRIS Group – Citeseer
[10] Subtree crossover: Building block engine or macromutation PJ
 Angeline - Genetic Programming, 1997.
[11] Fitnress distance correlation in structural mutation genetic
 programming L Vanneschi, M Tomassini, P Collard, M
 Clergue - Genetic Programming, 2003 – Springer
[12] Survey of genetic algorithms and genetic programming JR Koza –
 Technology Producing Quality Products Mobile 2002

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

436

Prof.T.Venkat Narayana Rao, received B.E in Computer
Technology and Engineering from Nagpur University, Nagpur, India,
M.B.A (Systems) and M.Tech in computer Science from Jawaharlal Nehru
Technological University, Hyderabad, A.P., India and a Research Scholar
in JNTU. He has 20 years of vast experience in Computer Science and
Engineering areas pertaining to academics and industry related I.T issues.
He is presently Professor and Head, Department of Computer Science and
Engineering, Hyderabad Institute of Technology and management,
Gowdavally, R.R.Dist., A.P,INDIA. He is nominated as an Editor and
Reviewer for 15 International journals relating to Computer Science and
Information Technology. He is currently working on research areas which
include Digital Image Processing, Digital Watermarking, Data Mining and
Network Security and other Emerging areas of Information Technologies.
He can be reached at tvnrbobby@yahoo.com

Srikanth Madiraju, pursuing B.Tech final year from Hyderabad Institute
of Technology and Management, gowdawalli, RR dist., Jawaharlal Nehru
Technological University, Hyderabad, A.P, and India. He has organized
national level tech-cultural festivals (iconix and esparto) during the year
2008 and 2009. He is life member and college representative for STED
(society for triggering engineer’s development, a jntu student chapter). In
addition to this he also won many paper presentation events at inter-
collegiate level and an active member of WWF CLUB (world wildlife
federation). He can be reached at mdrjsrikanth@yahoo.com

T. Venkat Narayana Rao et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 427-437

437

