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Abstract: Genetic Programming (GP) is an automated method 
for creating a working computer program from a high-level 
problem statement for a given problem. Genetic programming 
starts from a high-level statement of “what needs to be done” 
and to automatically create a computer program to solve the 
problem.  In artificial intelligence, genetic programming (GP) 
is an evolutionary algorithm-based methodology inspired by 
biological evolution to find computer programs that perform a 
user defined task. It is a specialization of genetic algorithms 
(GA) where in  each individual is a computer program. It is a 
machine learning technique used to optimize population of 
computer programs according to a fitness span determined by 
a program's ability to perform a given computational task. 
This paper presents an idea pertaining to the principles of 
genetic programming which includes relative effectiveness of 
mutation, crossover, breeding computer programs and fitness 
test in genetic programming. The literature of traditional 
genetic algorithms contains related studies, but through GP, it 
saves time by freeing the human from having to design 
complex algorithms. GP not only help in designing the 
algorithms but it could assist in creating the optimal solutions 
than traditional counterparts in a noteworthy ways. 
 
Keywords: Genetic Programming, subtree, chromosomes, 
mutation, Evolutionary. 
 
 
                     I.  INTROUCTION 
 
Way back in1954, the first work on Genetic Programming 
has initiated, highlighting the basic functionality of all the 
four basic aspects viz...  Breeding, Mutation, Crossover and 
Fitness test. Genetic Programming (hence forth referred as 
GP) began with the evolutionary algorithms firstly 
developed by Fogel Owens and Walsh was applied to 
evolutionary simulations as given in table 1. During 1960s 
and early 1970s, evolutionary algorithms became widely 
recognized as optimization methods. Genetic programming 
addresses the problem of automatic programming, namely, 
the problem of how to enable a computer to do useful things 
without instructing it, step by step, on how to do it. The first 
statement of modern "tree-based" Genetic Programming i.e., 
procedural languages organized in tree-based structures and 
operated on by suitably defined GA-operators was given by 
Nichael L. Cramer (1985). Koza has argued that mutation is 
in fact useless in Genetic Programming because of the 

position-independence of GP subtrees, and because of the 
large number of chromosome positions in typical Genetic 
Programming populations [Koza 1992, pp. 105–107]. This 
paper shows the merits of application of the basic aspects of 
Genetic Programming  that have proved more efficient is 
generating a good algorithms and pool of programs for 
better delivery of results[12]. The whole discussion lies in 
the advantage of utility of these major points in modern 
computations and algorithm writing. In the 1990s, GP was 
mainly used to solve relatively simple problems because it 
is very computationally intensive. Recently GP has 
produced many novel and outstanding results in areas such 
as quantum computing, electronic design, game playing, 
sorting and searching due to improvements in GP technology 
and the power[6][8]. These results include the replication or 
development of several post-year-2000 inventions. GP has 
also been applied to evolvable hardware as well as computer 
programs. The history of computer programming is a 
history of attempts to move away from the "craftsman" 
approach - structured programming, object-oriented 
programming, object libraries and rapid prototyping. But 
each of these advances leaves the code that does the real 
work firmly in the hands of the programmer. The ability to 
enable computers to learn to program themselves is utmost 
importance in freeing the computer industry and the 
computer user from code that is obsolete before it is 
released. Since the 1950s, computer scientists have tried, 
with varying degrees of success, to give computers the 
ability to learn. The umbrella term for this field of study is 
"machine learning" a phrase crafted in 1959 by the first 
person Samuel, who made a computer perform a serious 
learning task. Originally, Samuel used "machine learning" 
to mean computers programming themselves [Samuel, 
1963]. That goal has, for many years, proven too difficult. 
So the machine learning community has pursued more 
modest goals. A good contemporary definition of machine 
learning is due to Mitchell’s  study of computer algorithms 
that improve automatically through experience [Mitchell, 
1996]. Genetic programming, aspires to do precisely that - 
to induce a population of computer programs that improve 
automatically as they experience the data on which they are 
trained. Accordingly, GP has become the part of very large 
body of research called machine learning.  Developing a 
theory for GP has been very difficult and so in 1990s GP 
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was considered a sort of outcast among search techniques. 
But after a series of breakthroughs in the early 2000s, the 
theory of GP had a formidable and rapid development, so 
much so that it has been possible to build exact probabilistic 
models of GP (schema theories and Markov chain models). 
Genetic Programming is an extension of the Genetic 
Algorithm which was invented by John Holland (1975). 
Although the idea of evolving programs was first suggested 
by Forsyth (1981) and Cramer (1985) among others, it was 
proved, promoted and developed into a practical tool by 
John Koza. Genetic Programming is one technique amongst 
a whole range of possible evolutionary algorithms [3].  
 
What Machine Learning 
Although genetic programming is a relative newcomer to 
the world of machine learning, some of the earliest 
machine learning research bore a distinct resemblance to 
today's GP. In 1958 and 1959, Friedberg attempted to solve 
fairly simple problems by teaching a computer to write 
computer programs [Friedberg, 1958] [Friedberg et al., 
1959]. Friedberg's programs were 64 instructions long and 
were able to manipulate bitwise, a 64-bit data vector. Each 
instruction had a virtual "opcode" and two operands, which 
could reference either the data vector or the instructions. 
An instruction could jump to any other instruction or it 
could manipulate any bit of the data vector. Friedberg's 
system learned by using a modern mutation operator - 
random initialization of the individual solutions and 
random changes in the instructions. The process of 
machine learning that is, defining of the environment and 
the techniques for letting the machine learning system 
experience the environment for both training and 
evaluation are surprisingly similar from system to system. 
In the next section of this chapter, we shall, therefore, focus 
on machine learning as a high-level process. In early 
1980s, machine learning was recognized as a distinct 
scientific discipline. Since then, the field has grown 
tremendously. Systems now exist that in narrow domains, 
learn from experience and make useful predictions about 
the world. Today, machine learning is termed as an 
important part of real-world applications such as industrial 
process control, robotics control, time series prediction, 
prediction of credit worthiness and pattern recognition 
problems such as optical character recognition and voice 
recognition. At the highest level, any machine learning 
system faces a similar task - how to learn from its 
experience of the environment [1][4].  
 
    
 
 
 
 
 
 
 
 

                      Table 1: Summary of evolutionary algorithms 

 
The whole field is now called Evolutionary Computation. In 
common with many search techniques, the Genetic 
Programming algorithm has three basic components.  
 A population of candidate solutions (usually called 
genes or chromosomes). 
 A set of operations (genetic operators) which act on 
members of this population to produce new solutions [9]. 
 A method for evaluating how good each solution is, 
which involves trying it out in an appropriate environment. 
 
In Genetic Programming, each candidate solution is stored 
in the form of a tree structure. Two examples of these trees 
are shown in here i.e. Figure 1. The first of these might be 
interpreted as a function i.e.  p = 2.107p + 0.345 and the 
second as the logical expression (agent-4 saidYes) OR 
(agent-3 DidBetterThan me).  Initially, the population of 
candidate solutions is generated randomly from a 
specification of the possible nodes and terminals which can 
be used to construct a legal tree.  

 
 

Figure 1. Example of Genetic Programming solution being stored in tree   
                pattern. 
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Different problems in artificial intelligence, symbolic 
processing, and machine learning can be viewed as wanted 
discovery of a computer program that results in some 
desired output for particular inputs being fed. In this new 
genetic programming, pool of computer programs are 
genetically bred using “the Darwinian principle of survival” 
of the fittest and using a genetic crossover (recombination) 
operator appropriate for genetically mating computer 
programs.   
A.      Breeding features: 

 Attributed features: 
-competes with neural nets and alike 

       -needs huge populations (thousands). 
 Special features : 

-non-linear chromosomes: trees, graphs, Computer 
Programs as Trees. 
- Mutation possible but not necessary (disputed!) . 

Start off with a large “pool” of random computer programs. 
Need a way of coming up with the best solution to the 
problem using the programs in the “pool”. Based on the 
definition of the problem and criteria specified in the fitness 
test, mutations and crossovers are used to come up with new 
programs which will solve the problem further.   
 
For example: IF (NOC = 2) AND (S > 80000) THEN 
good ELSE bad  
can be represented by the following tree: 
IF formula THEN good ELSE bad . Only unknown is 
the right formula, hence our search space 
(phenotypes) is the set of formulas i.e.   Natural 
fitness of a formula: percentage of well classified 
cases of the model it stands for 
Natural representation of formulas (genotypes) is: 
parse trees  
 

 

 
 

 
The Trees are a universal form. We can represent an equation in 
the form of a  tree  for a given  example below : 

 
 

      Tree based representation: 

        (x  true)  (( x  y )  (z  (x  y))) 
 
 
 

 
 
 
  
In GA, ES, EP chromosomes are linear structures (bit 
strings, integer string, real-valued vectors, and 
permutations). Tree shaped chromosomes are non-linear 
structures. In GA, ES, EP the size of the chromosomes is 
fixed. Trees in Genetic Programming may vary in depth and 
width. 
 
 
B. The Fitness Test Function 
Identifying the way of evaluating how good a given 
computer program is at solving the problem at hand [11] 
[12]. How good can a program cope with its environment? 
Can be measured in many ways, i.e. error, distance, time, 
complexity etc. 

 Fitness Test Criteria; 
 Time complexity a good criteria i.e. n2 vs. nlogn. 
 Accuracy - Values of variables. 
 Combinations of criteria may also be tested. 

Fitness is the measure used by GP during simulated 
evolution of how well a program has learned to predict the 
output(s) from the input(s) i.e. the features of the learning 
domain. The goal of having a fitness evaluation is to give 
feedback to the learning algorithm regarding which 
individuals should have a higher probability of being 
allowed to multiply and reproduce, which individuals 
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should have a higher probability of being removed from the 
population. The fitness function is calculated on what we 
have earlier referred to as the training sets. Continuous 
Fitness Function, the fitness function should be designed to 
give graded and continuous feedback about how well a 
program performs on the training set. There are also other 
methods for calculating fitness.  
In co-evolution methods for fitness evaluation [Angeline 
and Pollack, 1993][Hillis, 1992], individuals compete 
against each other without an explicit fitness value. In a 
game-playing application, the winner in a game may be 
given a higher probability of reproduction than the loser. In 
some cases, two different populations may be evolved 
simultaneously with conflicting goals. For example, one 
population might try to evolve programs that sort lists of 
numbers while the other population tries to evolve lists of 
numbers that are hard to sort. This method is inspired by 
arms races in nature where, for example, predators and prey 
evolve together with conflicting goals. In some cases, it 
might be advantageous to combine very different concepts 
in the fitness criteria. We could add terms for the length of 
the evolved programs or their execution speed, etc. Such 
fitness function is referred to as a multiobjective fitness 
function. 

 
Each individual in a population is allotted with a fitness 
value as a result of its communication with the environment. 
Fitness is the driving force of Darwinian natural selection 
and, similarly to genetic algorithms. The environment is a 
set of cases which provides a basis for evaluating the fitness 
of the S expressions in the population. For example, for the 
exclusive-or function, the obvious choice for the 
environment is the set of four combinations of possible 
values for the two variable atoms D0 and D1 along with the 
associated value of the exclusive-or function for the four 
such combinations. For most of the problems described 
herein, the raw fitness of any LISP S-expression is the sum 
of the distances between the point in the range space 
returned by the S-expression for a given set of arguments 
and the correct point in the range space. The S-expression 
may Boolean-valued, integer-valued, real-valued, complex-
valued, vector valued, multiple-valued, or symbolic-valued. 
If the S-expression is integer-valued or real-valued, the sum 
of distances is the sum of absolute values of the differences 
between the numbers involved. In particular, the raw fitness 
r(i,t) of an individual LISP S-expression i in the population 
of size M at any generational time step t is : 

 
 r(i,t) =Ne  

          S(i,j) [Ex-Or] C(j)
  j=1 

 

 
Where S (i,j) is the value returned by S-expression i for 
environmental case j (of Ne environmental cases) and where 
C(j) is the correct value for environmental case j. If the S-
expression is Boolean-valued or symbolic-valued, the sum 
of distances is equivalent to the number of mismatches. If 
the S-expression is complex-valued, or vector-valued, or 

multiple valued, the sum of the distances is the sum of the 
distances separately obtained from each component of the 
vector or list. The closer this sum of distances is to zero, the 
better is  the S-expression. 
One can use the sum of the distances or the square root of 
the sum of the squares of the distances in this computation. 
It is important that the fitness function return a range of 
various values that distinguish the performance of single 
entities in the pool. As an example, a fitness function test 
that returns only two values (say, a true for a solution and a 
false otherwise) provides not enough information for 
helping guide to an adaptive process. Any outcome that is 
discovered with such a fitness function test is, then, 
essentially can be an accident (a false return). A wrong 
choice of the function set in relation to the number of 
environment cases for a given case can raise the same 
situatution. For example, if the Boolean function OR is in 
the function set for the exclusive-or problem, this function 
alone satisfies three of the four environment cases. Since the 
initial random population of individuals will almost 
certainly be numerous S-expressions equivalent to the OR 
function, we are effectively left with only two distinguishing 
levels of the fitness (i.e. 4 for a solution and 3 otherwise). 
 
The process of solving some typical problems can be 
reframed as a search for a most fit individual computer 
program in the range of possible computer programs. In 
particular, the search Space is the hyperspace of LISP 
symbolic expressions (called S-expressions) encapsulating 
functions and terminals appropriate to the problem domain. 
As noticed, the LISP S-expression which solves each of the 
problems described above will surface from a simulated 
evolutionary process using a new genetic programming 
paradigm using a "hierarchical genetic algorithm”.  
The functions may be standard arithmetic operations, 
standard programming operations, standard mathematical 
functions and various domain-specific functions[10]. A 
fitness function evaluates how well each individual LISP S-
expression in the population performs in the particular 
problem environment. In many problems, the fitness is 
measured by the sum of the distances i.e. taken for all the 
environmental cases  between the point in the range space 
(whether Boolean-valued, integer-valued, real-valued, 
complex-valued, vector-valued, symbolic valued, or 
multiple-valued) created by the S-expression for a given set 
of arguments and the correct point in the range space. An 
algorithm based on the Darwinian model of reproduction 
and survival of the fittest and genetic recombination is used 
to create a new population of individuals from the current 
population of individuals.  
The two participating parental S-expressions are selected in 
proportion to fitness. The resulting offspring S-expressions 
are composed of sub expressions "building blocks" from 
their parents. Then, the new population of offspring i.e. the 
new generation replaces the old population of parents, the 
old generation. Then, each individual in the new population 
is measured with the fitness function and the process is 
repeated. At every level of this highly parallel, locally 
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governed, and defragmented process, the state of the process 
will include only of the current population of individuals. 
Moreover, the only input to the algorithmic process will be 
the observed fitness of the individuals in the current 
population in correlation with the problem environment. 
This algorithm will produce populations which, over a 
period of generations, intend to show increasing average 
fitness in dealing with their environment, and which, in 
addition, will tend to robustly i.e. rapidly and effectively 
adapt and work accordingly to the changes in their 
environment. The solution produced by this algorithm at 
any given time can be viewed as the entire population of 
distinctive alternative solutions (typically with improved 
overall average fitness as compared to the beginning of the 
algorithm), or, more commonly, as the single best individual 
in the population at that time. The hierarchical character of 
the computer programs that are produced by the genetic 
programming paradigm is an important characteristic of the 
genetic programming. The results of this genetic 
programming methodology process are inherently 
hierarchical.  
The dynamic variability of the computer programs that are 
developed along the way to a solution is also an important 
feature of the genetic programming paradigm. In each case, 
it would be difficult and unnatural to try to specify or limit 
the size and shape of the eventual solution in advance. 
Moreover, the advance specification or restriction of the size 
and shape of the solution to a problem narrows the window 
by which the system views the world and might well 
prohibit finding the solution to the problem. 
Another important feature of the genetic programming 
paradigm is absence of preprocessing of inputs and the fact 
that the solution is expressed directly in terms of the 
functions and arguments from the problem domain. This 
makes the results immediately comprehensible and 
intelligible in the terms of the problem domain. Most 
importantly, the "genetic programming" paradigm is general 
and provides a single, unified approach to a variety of 
seemingly different problems in a variety of areas. 
 
      II. THE CROSSOVER (RECOMBINATION)    
              OPERATION 
 
Crossing over, process in genetics by which the two 
chromosomes of a homologous pair swap equal segments 
with each other. Crossing over occurs in the first division of 
meiosis. At that stage each chromosome has replicated into 
two strands called sister chromatids[5]. The two 
homologous chromosomes of a pair synapse, or come 
together. While the chromosomes are synapsed, breaks 
occur at corresponding points in two of the non-sister 
chromatids, i.e., in one chromatid of each chromosome[1]. 
Since the chromosomes are homologous, breaks at 
corresponding points mean that the segments that are broken 
off contain corresponding genes, i.e., alleles. The broken 
sections are then exchanged between the chromosomes to 
form complete new units, and each new recombined 
chromosome of the pair can go to a different daughter sex 

cell as shown in Figure 2. Crossing over results in 
recombination of genes found on the same chromosome, 
called linked genes that would otherwise always be 
transmitted together. Because the frequency of crossing over 
between any two linked genes is proportional to the 
chromosomal distance between them, crossing over 
frequencies are used to build genetic, or linkage, maps of 
genes on chromosomes. 
 

 
         Figure2.Chromosomes Pairs and Genetic Recombinations 
 
There are three principal constraints on biological crossover: 

 Biological crossover takes place only between 
members of the similar species. In fact, living 
creatures put much energy into identifying other 
members of their species - often putting their own 
existence at risk to do so. Bird songs, for example, 
attract mates of the same species and predators.  

 Biological crossover occurs with remarkable 
attention to preservation of "semantics”. Thus, 
crossover usually results in the same gene from the 
father being matched with the same gene from the 
mother. In other words, the hair color gene does 
not get swapped for the tallness gene[2]. 

  Biological crossover is homologous. The two 
DNA strands are able to line up identical or very 
similar base pair sequences so that their crossover 
is perfect almost down to the molecular level. But 
this does not eliminate crossover at duplicate gene 
sites or other variations, as long as very similar 
sequences are available. 

In nature, most crossover events are successful i.e. they 
result in viable offspring. This is a sharp contrast to GP 
crossover, where over 75% of the crossover events are what 
would be termed in biology "lethal”. What causes this 
difference? In a sense, GP takes on an enormous task. It 
must evolve genes (building blocks) so that crossover makes 
sense and it must evolve a solution to the problem all in a 
few hundred generations. It took nature billions of years to 
come up with the preconditions so that crossover itself 
could evolve. GP crossover is very different from biological 
crossover. Crossover in standard GP is unconstrained and 
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uncontrolled. Crossover points are selected randomly in 
both parents. There are no predefined building blocks 
(genes). Crossover is expected to find the good building 
blocks and not to disorder them even while the building 
blocks grow. 

 In the basic GP system, any subtree may be crossed 
over with any other subtree. There is no 
requirement that the two subtrees fulfill similar 
functions. In biology, because of homology, the 
different alleles of the swapped genes make only 
minor changes in the same basic function. 

 There is no requirement that a subtree, after being 
swapped, is in a context in the new individual that 
has any relation to the context in the old individual. 
In biology, the genes swapped are swapped with 
the corresponding gene in the other parent. 

 Were GP to develop a good subtree building block, 
it would be very likely to be disrupted by crossover 
rather than preserved and spread. In biology, 
crossover happens mostly between similar genetic 
materials. It takes place so as to conserve gene 
function with only minor changes. 

There is no reason to suppose that randomly initialized 
individuals in a GP population are members of the same 
species-they are created randomly. 
 
Crossovers in Programs: 
 
The crossover (recombination) operation for the genetic 
programming paradigm creates variation in the population 
by producing offspring’s that combine traits from two 
parents. The crossover operation starts with two parental S-
expressions and produces at least one offspring S-
expression. In general, at least one parent is chosen from the 
population with a probability equal to their respective 
normalized fitness values. In this paper, both parents are so 
chosen. The operation begins by randomly and 
independently selecting one point in each parent using a 
Probability distribution. Note that the number of points in 
the two parents typically is not equal. 
 Two parental programs are selected from the population 
based on fitness.  
 A crossover point is randomly chosen in the first and 
second parent.  
 The sub tree rooted at the crossover point of the first, or 
receiving, parent is deleted and replaced by the sub tree 
from   
        the second, or contributing, parent. 
 Crossover is the predominant operation in genetic 
programming (i.e. genetic algorithm) work and is performed 
with a  
        high probability that is about 85% to 90%. 
 
The "crossover fragment" for a particular parent is the 
rooted sub-tree whose root is the crossover point for that 
parent and where the sub-tree consists of the entire sub-tree 
lying below the crossover point (i.e. more distant from the 
root of the original tree). Viewed in terms of lists in LISP 

programming language , the crossover fragment is the sub-
list starting at the crossover point [4]. 
The first offspring is produced by deleting the crossover 
fragment of the first parent from the first parent and then 
impregnating the crossover fragment of the second parent at 
the crossover point of the first parent. In producing this first 
offspring the first parent acts as the base parent (the female 
parent) and the second parent acts as the impregnating 
parent (the male parent). The second offspring is produced 
in a symmetric manner as shown in example1. 
 
EXAMPLE1: 
For example, consider the two parental LISP S-expressions 
below: 

 
In terms of LISP S-expressions, the two parents are  (OR 
(NOT  D1) (AND D0 D1))   and 
 
(OR (OR D1 (NOT D0)) (AND  (NOT  D0)  (NOT  D1)) 
 
Assume that the points of both trees above are numbered in 
a depth-first way starting at the left. Suppose that the second 
point (out of the 6 points of the first parent) is selected as 
the crossover point for the first parent and that the sixth 
point (out of the 10 points of the second parent) is selected 
as the crossover point of the second parent. The crossover 
points are therefore the NOT function in the first parent and 
the AND function in the second parent. Thus, the bold, 
underlined portions of each parent above are the crossover 
fragments. The two crossover fragments are shown below: 
 

 
Note that the first offspring above is a perfect solution for 
the exclusive-or function, namely 
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 
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Note that because entire sub-trees are swapped, this genetic 
crossover (recombination) operation produces valid LISP S-
expressions as offspring regardless of which point is 
selected in either parent. If the root of one tree happens to be 
selected as the crossover point, the crossover operation will 
insert that entire parent into the second tree at the crossover 
point of second parent. In addition, the sub-tree from the 
second parent will, in this case, then become the second 
offspring. If the roots of two parents happen to be chosen as 
crossover points, the crossover operation simply degenerates 
to an instance of fitness proportionate reproduction on those 
two parents. 
 
If a terminal is located at the crossover point in precisely 
one parent, then the sub-tree from the second parent is 
inserted at the location of the terminal in the first parent and 
the terminal from the first parent is inserted at the location 
of the sub-tree in the second parent. In this case, the 
crossover operation often has the effect of increasing the 
depth of one tree and decreasing the depth of the second 
tree. If terminals are located at both crossover points 
selected, the crossover operation merely swaps these 
terminals from tree to tree [7] [12]. 
 
           III.  MUTATION IN NATURE 
 
Mutations can involve large sections of DNA becoming 
duplicated, usually through genetic recombination. These 
duplications are a major source of raw material for evolving 
new genes, with tens to hundreds of genes duplicated in 
animal genomes for million years and have following 
characteristics. 

 Ultimate source of genetic variation. 
 Radiation, chemicals change genetic  
         information. 
 Causes new genes. 
 One chromosome. 
 Asexual. 
 Very rare combinations possible. 

A gene mutation is a permanent change in the DNA 
sequence that makes up a gene. Mutations range in size 
from a single DNA building block (DNA base) to a large 
segment of a chromosome. Gene mutations occur in two 
ways: they can be inherited from a parent or acquired during 
a person’s lifetime. Mutations that are passed from parent to 
child are called hereditary mutations or germ line mutations 
(because they are present in the egg and sperm cells, which 
are also called germ cells). This type of mutation is present 
throughout a person’s life in virtually every cell in the body. 
Figure 3. showcases a example involving crossover and 
mutation process  for  a  inducting assembler . 
Somatic also called as acquired mutations occur in the DNA 
of individual cells at some time during a person’s life. These 
changes can be caused by environmental factors such as 
ultraviolet radiation from the sun, or can occur if a mistake 
is made as DNA copies itself during cell division. Acquired 
mutations in somatic cells (cells other than sperm and egg 
cells) cannot be passed on to the next generation. 

 

 
 

Figure 3. example showing a mechanism in crossover and mutuation to 

induce an assembler. 
 
Some genetic changes are very rare, others are common in 
the population. Genetic changes that occur in more than 1 % 
of the population are called polymorphisms [6] [1] [9]. They 
are common enough to be considered a normal variation in 
the DNA. Polymorphisms are responsible for many of the 
normal differences between people such as eye color, hair 
color, and blood type. Although many polymorphisms have 
no negative effects on a person’s health, some of these 
variations may influence the risk of developing certain 
disorders. Mutations can involve large sections of DNA 
becoming duplicated, usually through genetic 
recombination. 
Entropy driven variation, such as mutation, is the principal 
source of variability in evolution. There are many types of 
mutation, including [Watson and Wonklhofer   et al., 1987] 
as given below: 
 Changes from one base pair to another are a possibility. 

These often produce neutral or useful variations. 
Although a base pair switch occurs about once every 
ten million replications or less, there are hot spots 
where base pair switching is up to twenty-five times the 
usual rate.  

 Additions or deletions of one or more base pairs. This is 
called a frame shift mutation and often has drastic 
consequences on the functioning of the gene. 

 Large DNA sequence rearrangements. These may occur 
for any number of reasons and are almost always lethal 
to the organism. 
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Mutation operates on only one individual. Normally, after 
crossover has occurred, each child produced by the 
crossover undergoes mutation with a low probability. The 
probability of mutation is a parameter of the run. A separate 
application of crossover and mutation, however, is also 
possible and provides another reasonable procedure. When 
an individual has been selected for mutation, one type of 
mutation operator in tree GP selects a point in the tree 
arbitrarily and replaces the existing subtree at that point with 
a new randomly generated subtree. The new randomly 
generated subtree is created in the same way, and subject to 
the same limitations (on depth or size) as programs in the 
initial random population. The altered individual is then 
located back into the population. In linear GP, mutation is a 
bit different. When an individual is chosen for mutation, the 
mutation operator first selects one instruction from that 
individual for mutation. It then makes one or more changes 
in that instruction. The type of change is chosen randomly 
from the following list: 
 
 
 
 Any of the register designations may be changed to 

another randomly chosen register designation that is in 
the register set.  

  The operator in the instruction may be changed to 
another operator that is in the function set. 

 A constant may be changed to another randomly chosen  
       constant in the designated constant range. 
 
Mutations in Programs: 
 Single parental program is probabilistically selected  
       from the population based on fitness.  
 Mutation point randomly chosen. the sub tree rooted at  
        that point is deleted, and a new subtree is grown there  
        using the   same random growth process that was used  
        to generate the initial population.  
 Asexual operations are typically performed sparingly  
       (with a low probability of, probabilistically selected  
       from the   population based on fitness).  
 Most common mutation: replace randomly chosen sub  
        tree by randomly generated tree. 

 
 

 Mutation has two parameters: Probability pm to choose 
mutation vs. recombination and the Probability to choose an 
internal point as the root of the sub tree to be replaced. 
Remarkably pm is advised to be 0 (Koza’92) or very small, 
like 0.05 (Banzhaf et al. ’98). The size of the child can 
exceed the size of the parent. The below subtrees shows the 
parent and child patterns in detail. 

 

 
      Parent1                                            Parent2 
 
 
 

 
              Child1                                 Child2  
 
The mutation operation potentially can be beneficial in 
reintroducing diversity in a population that may be tending 
to prematurely converge. 

IV. APPLICATIONS OF GENETIC PROGRAMMING    

The detailed summary of applications of Genetic 
Programming domain is listed in the table 2. and Tables 3.     
                                             
A. Designing Electronic Circuits 
John Koza, a professor at Stanford and CEO of Genetic 
Programming Inc. is perhaps the person most responsible 
for making GP more acceptable in the eyes of the AI 
community. He and his team have successfully applied 
genetic programming techniques to a variety of applications 
ranging from bioinformatics to distributed systems. One of 
their most successful endeavors has been to the generation 
of electronic circuit designs. Here, the programs are actually 
all about the flow of information around the circuits, so the 
function set contains functions which mimic the actions of 
transistors, resistors, etc., on the flow of electricity. 
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According to the web site at Genetic Programming Inc: 
"there are now 36 instances where genetic programming has 
automatically produced a result that is competitive with 
human performance, including 15 instances where genetic 
programming has created an entity that either infringes or 
duplicates the functionality of a previously patented 20th-
century invention, 6 instances where genetic programming 
has done the same with respect to a 21st-century invention, 
and 2 instances where genetic programming has created a 
patentable new invention”. 
 
B. Evolutionary Art 
One of the most exciting and creative areas in which genetic 
programming is being is applied is evolutionary art. In 
contrast to most GP applications, in evolutionary art, the 
user often acts directly as the fitness function. That is, the 
GP engine generates a set of programs which can produce 
images (i.e. JPEG's etc.), either by transforming a given 
image, or generating pixel data from scratch. These images 
are then shown to the user, who performs the selection by 
choosing those which they most like. The GP engine then 
generates a population from the chosen images and selects 
from it images which fairly closely resemble the ones 
chosen by the user, or which have some properties similar to 
the chosen ones, e.g., color distribution. The user then 
selects those with most appeal again, and the process 
continues until the user is so happy with the image that they 
put it on their homepage. The evolutionary art community 
includes many artists and computing professionals, and the 
artworks their programs produce generate much interest 
(similar to how everyone was amazed by fractal images 
when they first came out). Such an approach was recently 
used to generate images for an ad-campaign by Absolute 
Vodka, for example.  
        

 Table 2. : Applications of Genetic Programming                                 

 

 
 

Table 3.:Science Oriented Applications of   
Genetic Programming 
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                        CONCLUSION 
 
The data presented in this paper is formulated on various 
studies and research work carried out, presenting various 
examples that explain  in detail about the aspects of genetic 
programming. The final analysis of the data indicates that 
crossover is more successful than mutation overall, though 
mutation is often better for small populations, depending on 
the domain. However, the difference between the two is 
usually small, and often statistically insignificant. Apart 
from its straightforward instrumental uses, the study of GP 
opens up a new and wide range of possibilities for social 
simulators that of models based on a learning technique 
where the structure of what is learnt. It is a methodology 
that can be used to generate some aspects of the creative 
learning caliber of humans. Of course, the GP algorithm is 
not a perfect mirror of human cognition. To be used 
effectively as a descriptive element in a social simulation, it 
needs to be adapted to ensure that it is as realistic as 
possible.  GP is not yet a completely mature technique. As 

such, its impact in the field of social simulation has just 
begun. No doubt its impact will be at least as great as those 
of previous paradigms such as neural networks or genetic 
algorithms. It introduces a new computational analogy but 
because it is unparalleled as a creative computational 
technique thus we anticipate that in the days to come GP 
would be applied and we may be genuinely surprised at the 
results.  
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