
Software Architectures Design Patterns Mining for
Security Engineering

A.V.Krishna Prasad1, Dr.S.Ramakrishna2

1 Department of MCA MIPGS Hyderabad A.P. India
2 Department of Computer Science S.V.U Campus Tirupathi A.P. India

Abstract—Data Mining for Software Engineering involves
Architectural mining intelligence operations, which are
knowledge gathering procedures. These intelligence operations
go beyond basic data collection (assembling uncorrelated
information) to the point of collecting fully assimilated practical
knowledge – knowledge that affects important architectural
decisions. Gathering knowledge is an essential element of being a
software architect. Ordinary knowledge gathering for a project
requires the capture of end user requirements and perhaps the
evaluation of some commercial product. Proper architectural
practices go well beyond these project centric traditions, which
are isolationist when used exclusively. Instead, these practices
should be augmented with some additional procedures that have
been found to be effective, including architectural mining,
architectural iteration, and architectural judgment.
Architectural mining is a practice that breaches classic
intelligence barriers between projects. IT can have an
intelligence scope as large as entire industry or as small as one
company’s systems. Architectural mining is a conscious effort to
eliminate the ignorance of silence that characterizes many system
developments. Architectural iteration is a process focused upon a
single architecture or specification. It tracks the architecture
through its development and life cycle, improving quality
through intelligence gathering on each project. Architectural
judgment is a process of decision making, based upon intelligence
gathering. Making quality decisions is at the very heart of being
an architect. In today’s changing world of technology, it is
increasingly difficult to make long-lasting judgments without a
systematic process. In this paper, we want to discuss about
Architectural Mining (Design Pattern Mining) strategies for
Software Security Architectures, which are validated with
appropriate SAO Web Services case studies.
Index Terms—Architecture Mining, Design Pattern Mining,
Security Architectures

I. INTRODUCTION TO MINING SOFTWARE ARCHITECTURES

Software Architectural mining for intelligence operations are
knowledge gathering procedures, intelligence operations go
beyond basic data collection (assembling uncorrelated
information) to the point of collecting fully assimilated
practical knowledge – knowledge that affects important
architectural decisions.
Gathering knowledge is an essential element of being a
software architect. Ordinary knowledge gathering for a project
requires the capture of end user requirements and perhaps the
evaluation of some commercial product. Proper architectural

practices go well beyond these project centric traditions,
which are isolationist when used exclusively.
Instead, these practices should be augmented with some
additional procedures that have been found to be effective,
including architectural mining, architectural iteration, and
architectural judgment.
Architectural mining is a practice that breaches classic
intelligence barriers between projects. IT can have an
intelligence scope as large as entire industry or as small as one
company’s systems. Architectural mining is a conscious effort
to eliminate the ignorance of silence that characterizes many
system developments.
Architectural iteration is a process focused upon a single
architecture or specification. It tracks the architecture through
its development and life cycle, improving quality through
intelligence gathering on each project.
Architectural judgment is a process of decision making, based
upon intelligence gathering. Making quality decisions is at the
very heart of being an architect. In today’s changing world of
technology, it is increasingly difficult to make long-lasting
judgments without a systematic process.

A. .A. Security Architectures for Software Security Engineering

Software Engineering covers the definition of processes,
techniques and models suitable for its environment to
guarantee quality of results. An important design artifact in
any software development project is the Software Architecture.
Software Architecture’s important part is the set of
architectural design rules. A primary goal of the architecture is
to capture the architecture design decisions. An important part
of these design decisions consists of architectural design rules.
In an MDA (Model-Driven Architecture) context, the design
of the system architecture is captured in the models of the
system. MDA is known to be layered approach for modelling
the architectural design rules and uses design patterns to
improve the quality of software system.
 And to include the security to the software system, security
patterns are introduced that offer security at the architectural
level. More over, agile software development methods are
used to build secure systems. There are different methods
defined in agile development as extreme programming (XP),
scrum, feature driven development (FDD), test driven
development (TDD), etc.
 Agile processing is includes the phases as agile analysis, agile
design and agile testing. These phases are defined in layers of

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 408-413

408

MDA to provide security at the modelling level which ensures
that “security at the system architecture stage will improve the
requirements for that system”.

B. Research Problem Definition

Mining software engineering secure software architectures
using Model-driven architectures and Agile modeling for
Requirements engineering, this is validated for Web Services
case study and its related challenges. Our Strategies include
text mining for source code and Design Patterns Mining and
Graph Mining for architecture mining.
Our Research Motivation is Integrating Security and Software
Engineering using mining strategies. This approach involves:
Evaluating the different Software Engineering Paradigms with
respect to their appropriateness to integrate security;
Developing new techniques, methods, processes that consider
security as part of the software development life cycle; Tool
Support/define a Suitable Exemplar; Transfer of security
knowledge / transit research results to mainstream system
development.
Key research questions addressed are:
Security Analysis and Design issue:
1. “How well the system authenticates the users and protects
the application and data elements access control?”
2. “How Model-driven architectures and Agile Modeling are
useful for security architectures?”
Data Mining:
What are the challenges in applying data mining techniques to
software engineering data?
Which Data Mining techniques are most suitable for mining
design patterns?
How can agile methodology be used to generate effective
security requirements? In what ways can these agile methods
change the development of security requirements?
Research Methodology includes
Through extensive literature survey on data mining for
software engineering, related work pertaining to Source Code,
Architecture and Architecture Patterns in Security (Web
Services case study) had been studied with a motivation for
Good Architectural Design metrics. Drawbacks in the existing
system pertaining to authorization, authentication, role based
access control for Security Architecture (Web Services) are
studied. Other models of software development like
prototyping, formal transformations; extreme programming
had been explored for secure programming practices. The
present and future industry needs related to security
architectures had been studied. Text mining and design pattern
graph mining are applied for secure Source code and security
architectures respectively. A case study on Web Services
Security Architectures had been carried out to justify our
approach.

C. Objectives of the Research Work

The objective of the research work to propose “Mining
Security Architectures using Model-Driven & Agile Modeling
for Requirements Engineering – Web Services Case Study” is
to:

Overview of Research
Software Security Engineering is about building systems to
remain dependable in the face of malice, error, or mischance.
Most attacks to software systems are based on vulnerabilities
caused by poorly designed and developed software. The
enforcement of Security at the Design phase can reduce the
cost and effort associated with the introduction of security
during implementation. Security Architectures are
architectures which enable implementations that are resilient
to an appropriate and broad-based spectrum of threats. Issues
are: Complexity is the source of security holes; Security is the
matter of the weakest link. Tradeoffs need to be based for
complexity vs. protection, performance, usability and
flexibility.
Security analysis and design issue: “How well the system
authenticates the users and protects the application and data
elements?”
Software Engineering covers the definition of processes,
techniques and models suitable for its environment to
guarantee quality of results. An important design artifact in
any software development project is software architecture.
Software architectures important part is the set of architectural
design rules. A primary goal of the architecture is to capture
the architecture design decisions. An important part of these
deign decisions consists of architectural design rules. In a
MDA (Model-Driven Architecture) context, the design of the
system architecture is captured in the models of the system.
MDA is known to be layered approach for modeling the
architectural design rules and uses design patterns to improve
the quality of software system and to include the security to
the software system, security patterns are introduced that offer
security at the architectural level. More over Agile software
development methods are used to build secure systems. There
are different methods defined in Agile development such as
eXtreme Programming (XP), Scrum, Feature Driven
Development (FDD) and Test Driven Development (TDD) etc.
Agile processing includes the phases like Agile Analysis,
Agile Design and Agile Testing. These phases are defined in
layers of MDA to provide security at the modeling level
which ensures that “Security at the system architecture stage
will improve the requirements for that system”.
The most important ten things a software architect does are;
inquire, integrate, analyze, conceptualize, abstract, visualize,
formalize, communicate, enable and assist. Software
architecture captures the broad-stroke strategic design
decisions of a particular system. Architectural design fits into
the overall development process with security encompassing
all the phases. Successful software and software systems are
directly attribute to elegant and efficient modeling and design.
Models let users, architects and developers create readily
understandable representations of complex object-oriented
systems, before development begins. Over the past few
decades the IT industry has developed a range of approaches
for modeling and documentation. Structured approaches,
Data-driven approaches, Process-driven approaches, Object-
oriented approaches, Unified approaches, Domain-specific
approaches, Serial approaches, and agile approaches. Web

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 408-413

409

services security architectures includes core standards,
implementations on various technologies and platforms.
Financially driven attackers and high profile breaches have
changed the economics of security. Software developers and
designers needs to rethink the motivations of attackers the
new attacker economy had given a growing stolen identity
information trade the raise of organized electronic crime.
“Hackernomics” is a social science concerned with
description and analysis of attacker motivations, economics
and businesses.

II. MINING DESIGN PATTERNS FOR SECURITY ARCHITECTURES

 Design patterns are micro-architectures that have proved to
be reliable, easy to implement and robust. There is a need in
science and industry for recognizing these patterns. We
present a new method for discovering design patterns in the
source code. This method provides a precise specification of
how the patterns work by describing basic structural
information like inheritance, composition, aggregation and
association, and as an indispensable part, by defining call
delegation, object creation and operation overriding. We
introduce a new XML–based language, the Design Pattern
Mark up Language(DPML),which provides an easy way for
The users to modify pattern descriptions to suit their needs, or
even to define their own patterns or just classes in certain
relations they wish to find.

Graph Mining:
Data mining is the extraction of novel and useful knowledge
from data. A graph is a set of nodes and links (or vertices and
edges), where the nodes AND/OR links can have arbitrary
labels, and the links can be directed or undirected (implying
an ordered or unordered relation). Therefore, mining graph
data, sometimes called graph-based data mining, is the
extraction of novel and useful knowledge from a graph
representation of data. In general, the data can take many
forms from a single, time-varying real number to a complex
interconnection of entities and relationships. While graphs can
represent this entire spectrum of data, they are typically used
only when relationships are crucial to the domain. The most
natural form of knowledge that can be extracted from graphs
is also a graph. Therefore, the knowledge sometimes referred
to as patterns, mined from the data is typically expressed as
graphs, which may be subgraphs of the graphical data, or
more abstract expressions of the trends in the data. Graph
visualization is the rendering of the nodes, links, and labels of
a graph in a way that promotes easier understanding by
humans of the concepts represented by the graph.

A. Architecture and Design Pattern Discovery
Techniques – A Review

Architecture and design patterns, as demonstrated solutions to
recurring problems, have proved practically important and
useful in the process of software development. They have
been extensively applied in industry. Discovering the
instances of architecture and design patterns from the source
code of software systems can assist the understanding of the
systems and the process of re-engineering. More importantly,

it also helps to trace back to the original architecture and
design decisions, which are typically missing for legacy
systems. This approach presents a review on current
techniques and tools for discovering architecture and design
patterns from object-oriented systems. We classify different
approaches and analyze their results. We also discuss the
disparity of the discovery results from different approaches
and analyze possible reasons with some insight.

B. Software Metrics by Architectural Pattern Mining

A software architecture is the key artifact in software design,
describing the main elements of a software system and their
interrelationships. We present a method for automatically
analyzing the quality of an architecture by searching for
architectural and design patterns from it. In addition to
approximating the quality of the design, the extracted patterns
can also be used for predicting the quality of the actual system.
The method is demonstrated by an industrial case over a
complex telephone exchange software.

C. Mining Design Patterns form (C++) Source Code

Design patterns are micro architectures that have proved to be
reliable, easy to implement and robust. There is a need in
science and industry for recognizing these patterns. We
present a new method for discovering design patterns in the
source code. This method provides a precise specification of
how the patterns work by describing basic structural
information like inheritance, composition, aggregation and
association, and as an indispensable part, by defining call
delegation, object creation and operation overriding. We
introduce a new XML–based language, the Design Pattern
Mark up Language(DPML),which provides an easy way for
the users to modify pattern descriptions to suit their needs, or
even to define their own patterns or just classes in certain
relations they wish to find. We tested our method on four
open-source systems, and found it effective in discovering
design pattern instances.

D. A review of Design Pattern Mining Technique

The quality of a software system highly depends on its
architectural design. High quality software systems typically
apply expert design experience which has been captured as
design patterns. As demonstrated solutions to recurring
problems, design patterns help to reuse expert experience in
software system design. They have been extensively applied
in industry. Mining the instances of design patterns from the
source code of software systems can assist the understanding
of the systems and the process of re-engineering them. More
importantly, it also helps to trace back to the original design
decisions, which are typically missing in legacy systems. This
approach presents a review on current techniques and tools for
mining design patterns from source code or design of software
systems. We classify different approaches and analyze their
results in a comparative study. We also examine the disparity
of the discovery results from different approaches and analyze
possible reasons with some insight.

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 408-413

410

E. Architectural Risk Analysis of Software Systems
based on Security Patterns

The importance of software security has been profound, since
most attacks to software systems are based on vulnerabilities
caused by poorly designed and developed software. Further
more, the enforcement of security in software systems at the
design phase can reduce the high cost and effort associated
with the introduction of security during implementation. For
this purpose, security patterns that offer security at the
architectural level have been proposed in analogy to the well-
known design patterns. The main goal of this approach is to
perform risk analysis of software systems based on the
security patterns that they contain. The first step is to
determine to what extent specific security patterns shield from
known attacks. This information is fed to a mathematical
model based on the fuzzy-set theory and fuzzy fault trees in
order to compute the risk for each category of attacks. The
whole process has been automated using a methodology that
extracts the risk of a software system by reading the class
diagram of the system under study.

F. Design Pattern detection using Similarity Scoring

The identification of design patterns as part of the
reengineering process can convey important information to
the designer. However, existing pattern detection
methodologies generally have problems in dealing with one or
more of the following issues: Identification of modified
pattern versions, search space explosion for large systems and
extensibility to novel patterns. In this appraoch, a design
pattern detection methodology is proposed that is based on
similarity scoring between graph vertices. Due to the nature of
the underlying graph algorithm, this approach has the ability
to also recognize patterns that a remodified from their
standard representation. More over, the approach exploits the
fact that patterns reside in one or more inheritance hierarchies,
reducing the size of the graphs to which the algorithm is
applied. Finally, the algorithm does not rely on any pattern-
specific heuristic, facilitating the extension to novel design
structures. Evaluation on three open-source projects
demonstrated the accuracy and the efficiency of the proposed
method.

III. IMPLEMENTATIONS AND VALIDATIONS

A. Design and Mining of Web Services Security Patterns

 Service-Oriented Architectures (SOA) represents a new
evolving model for building distributed applications. Services
are distributed components that provide well-defines
interfaces that process and deliver XML messages. A service-
based approach makes sense for building solutions that cross
organizational, departmental, and corporate domain
boundaries. A business with multiple systems and applications
on different platforms can use SOA to build a loosely coupled
integration solution that implements unified workflows.
Security in an SOA environment involves verifying several
elements and maintaining confidence as the environment

evolves. Organizations deploying SOA implementations
should identify practical strategies for security verification of
individual elements, but should be aware that establishing the
security characteristics of composites and applications using
services is an active research. Organizations should also
identify the deployment strategies for the SOA infrastructure,
services, composites, and applications because different
deployment strategies can entail different security verification
practices. Finally, all elements should be verified in their
operational contexts.

A. Web 2.0 Services Security Mining

“If we think implementing security is expensive, see how
much a breach it will cost us”. The web services standards are
a group of agreements designed to facilitate interaction and
provide common protocols in all areas of web services. They
are produced by the OASIS organization, www.oasis-open.org,
which has a large number of participants including many of
the large software companies such as IBM and MICROSOFT.
In this mini project case study, we take a look at WS-security
agreements and use the Microsoft implementation, known as
WSE 3.0, in conjunction with visual studio 2005 to produce a
web service that requires authentication. There are a number
of ways to secure a web service. A simple way might be to use
SSL together with client side certificates to ensure that the
potential user is some one allowed to call the services method.
The problem with this approach would be to pass the user
credentials as part of the method call. This can be overcome
by using SOAP protocol along with Secure Socket Layer
(SSL). In this mini project we want to implement web 2.0
services security using visual studio 2005/2008/2010. Refer to
Figure 1, Figure 2 and Figure 3
which consists of Class diagram, sequence diagram and
execution screen shot of the application respectively.

Figure 1. Class Diagram of the application

Figure 2. Sequence Diagram of the application

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 408-413

411

Figure 3. Execution screen shot of the application

B. SSL Crypto Implementation for Web Services Mining

The web is everywhere. “Web services” is an effort to build a
distributed computing platform for the web. One problem
when we administer a network is securing the data across the
wide web. While many of web services have been met wit the
existing standards, there are still a number of challenges that
have yet to be considered.
In this mini project case study, we take a look at web services
security architecture’s modification with the existing standard
in order to overcome with the authentication attack.
Authentication process deals with the SSL/TLS layer. In this
mini project we want to implement with the web 2.0 services
security in the SSL version 3.0(TLS) using java as technology.
Initially, JCA and JCE will be studied. Next the provider
bouncy castle is dealt with. Later this Web Services will be
secured by adding policy, custom authentication, certificate
and key generation and storage etc. Refer to Figure 4, Figure 5
and Figure 6 which consists of Class diagram, sequence
diagram and execution screen shot of the application
respectively.

Figure 4. Class Diagram of the application

Figure 5. Sequence Diagram of the Application

Figure 6. Execution Screen Shot of the application

IV. CONCLUSIONS AND SUTURE WORK

In this paper, we proposed strategies for Software
Architectures Mining for Software Security Engineering, with
SOA Web Services Case Study.
Further Work includes: In modern integrated software
engineering environments, software engineers must be able to
collect and mine software engineering data on the fly to
provide rapid just-in-time feed back. SE researchers usually
conduct offline mining of data already collected and stored.
Stream data mining algorithms and tools could be adopted or
developed to satisfy such challenging mining requirements.
For Web Services Security Architecture Mining, we can
extend this work for (Spatial) Virtualization and Cloud
Computing.

V. ACKNOWLEDGEMENTS

 The authors wish to thank the following students of CSE,
MGIT for implementing these concepts: B.Preethi, Kavitha,
Anuradha, R.Nitesh Kumar, Ch.Nitesh Reddy, M.Sundeep
and A.Prithvi Srikanth
For detailed implementations, source code, UML diagrams
and documentation, please refer to the website
http://sites.google.com/site/upendramgitcse

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 408-413

412

VI. REFERENCES
 [1]. Tao Xie, Suresh Thummalapenta, David lo, Chao Liu, ”Data
Mining for Software Engineering”, IEEE Computer, Auguat 2009,
pp. 55-62.
[2]. Tao Xie, Jain Pei, Ahmed E Hassen, “Mining Software
Engineering Data”, IEEE 29 th International Conference on Software
Engineering ICSE 07.
[3]. Gang Kou Yipeng, “ A Standard for Data Mining based Software
Debugging”, IEEE 4 th International Conference on Networked
Computing and advanced Information Management, pp. 149 – 152.
[4]. Ray-Yaung Chang, Andy Podgurski, Jiong Yang, “Discovering
Neglected Condition in Software by Mining Dependency Graphs”, ”,
IEEE Transactions on Software Engineering, Vol. 34, No. 5,
September/October 2008, pp. 579-596.
[5]. Gunnar Peterson, “Security Architecture Blueprint”, Arctec
Group LLC, 2007.
[6]. Heiko Tillwick and Martin S Olivier, “A Layered Security
Architecture: Design Issues”, in Proceedings of the Fourth Annual
Information Security South Africa Conference (ISSA2004), July
2004.
[7]. Mouratidis and Giorgini, Integrating Security and Software
Engineering: Advances and Future Vision. Idea Group Publishing
Inc., 2007.
[8]. John Paul Mueller, Mining Google Web Services – Building
Applications with the Google API SYBEX Publishing Inc., 2004.
[9]. Hossein keramati, Seyed-Hassan Mirian-Hosseinabadi,
“Integrating Software Development Security Activities with Agile
Methodologies”, 2008, IEEE.
[10]. I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, C.-L. Lazar, “An
Agile MDA approach for Executable UML Structured Activities”,
Studia Univ. Bases, vol. LII, No. 2, 2007.
[11].. Yann-Gael Gueheneuc, Giuliano Antoniol, “DeMIMA: A
Multilayered Approach for Design Pattern Identification”, 2008,
IEEE Transactions on Software Engineering, vol. 34, no. 5.
[12]. Spyros T. Halkidis, Nikolaos Tsantalis, Alexander
Chatzigeorgiou, George Stephanides, “Architectural Risk Analysis of
Software Systems Based on Security Patterns”, 2008, IEEE
Transactions on dependable and secure computing, vol. 5, no. 3.
[13]. Erich Gamma, “Design Patterns”.
[14]. M. Siponen, R. Baserville, T. Kuivalainen, “Extending Security
in Agile Software Development Methods”, pp 143-157.
[15]. Johan Peeters, “Agile Security Requirements Engineering”.
[16]. Alexander Chatzigeorgiou, Nikolaos Tsantalis, George
Stephanides, "Application of Graph Theory to OO Software
Engineering"
[17]. Ladislav Burita–Vojtech Ondryhal, "Extending Uml For
Modelling
Of Data Mining Cases"
[18]. Jing Dong, Yajing Zhao, Tu Peng , "A Review of Design
Pattern Mining Techniques ".
[19]. Jing Dong, Yajing Zhao, Tu Peng , " Architecture and Design
Pattern Discovery Techniques – A Review”
[20]. Zsolt Balanyi, Rudolf Ferenc, "Mining Design Patterns from
C++ Source Code"
[21]. Jing Dong, Yajing Zhao, Tu Peng "A Review of Design Pattern
Mining Techniques "
[22]. Nikolaos T santalis, Alexander Chatzi , "Design Pattern
Detection Using Similarity Scoring"

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 408-413

413

