
 

 

 

Abstract— This paper presents a methodology to reduce the 

area of DSP architecture on silicon using folding. Folding is 

particularly important and has impact on large DSP 

circuits/architectures. This technique is powerful to reduce 

functional units in DSP circuits/architectures which mainly 

depend on folding factor. The folding technique is used to 

derive the control circuitry of the hardware architectures 

such as functional units (adders and multipliers). Folding 

technique also supports complex operations with time 

multiplexing. The time multiplexing reduces the area by 

repeating computations on the same hardware unit. Apart 

from folding technique, register minimization technique is 

used to minimize the number of registers. This methodology 

is verified using Spartan 3A/3AN device family. The 

comparison table of unfolded and folded circuits shows the 

better performance of the folding algorithm.  

 

Index Terms: DFG, folding, foldingfactor, DSP, retiming, 

Lifetime analysis. 

 
I.  INTRODUCTION 

The widespread use of digital representation of signals for 

transmission and storage has created challenges in the area of 

digital signal processing (DSP). In response to these 

challenges, DSP techniques have emerged for tasks such as 

area reduction and power reduction [1]. DSP is used in 

numerous applications such as video compression, modems, 

multimedia, speech processing and biomedical signal 

processing. The field of DSP has always been driven by the 

advances in DSP applications and in VLSI technologies.  

These implementations are required to satisfy the enforced 

sampling rate constraints of the real time DSP applications and 

use less space and power consumption. DSP computation is 

different from general purpose computation in the sense that 

the DSP programs are nonterminating programs. In DSP 

computation the same program is executed repetitively on an 

infinite time series. The nonterminating nature can be exploited 

to design more efficient DSP systems by exploiting the 

dependency of tasks both within iteration and among multiple 

iterations. These algorithms need to be modified for the design 

of low speed or low area implementations. In DSP architectures 

it is important to minimize the silicon area of the integrated 

circuits, which is achieved by reducing the number of 

functional units such as adders and multipliers. The process of 

executing many algorithm operations in one hardware 

operator is referred to as folding [2]. The folding technique is 

used to determine the control circuits in DSP architectures 

where multiple algorithm operations are time multiplexed to a 

single functional unit such as a pipelined adder [4], [5]. By 

executing multiple algorithm operations on a single functional 

unit, the number of functional units in the implementation is 

reduced, resulting in smaller silicon area. Folding technique 

can also be used for synthesis of DSP architectures that can be 

operated using single or multiple clocks.  

The folding technique can be used in any of the DSP 

architectures where there is a requirement of substantial area 

reduction. Folding provides a means of trading area for time in 

DSP architectures. Folding equations can be used to 

systematically determine the control circuitry for the 

architecture from a data flow graph. Folding can also be used to 

address other related problems in high-level synthesis in a 

formal manner.  

The paper is organized as follows. Section II reviews some 

fundamentals of data flow graphs. Section III derives the 

folding equations which are used to synthesize the control 

circuits for the DSP architectures. Register minimization is 

addressed in the section IV. In section V synthesis results are 

given. Conclusions are stated in section VI.  

 

II.  DATAFLOW GRAPHS 

Data flow graphs (DFGs) are used in the simulation of 

computer systems. The main advantage of data flow graphs 

over other models of parallel processors is their compactness 

and general amenability for direct interpretation. That is, the 

translation from the conceived system to a DFG is straight-

forward and, once accomplished, it is equally straightforward 

to determine by inspection which represent the aspects of the 

system. Because of the hierarchical nature and the modularity 

of data flow graphs, both software tasks and hardware units can 

be modeled using DFGs [9], [11-13]. 
 

The tasks of the DSP algorithm are assumed to be executed 

repetitively. Each node in the DFG represents an algorithm 

operation or task, and any arc U → V with i delay (where i is 

any nonnegative integer) implies that the result of i
th

 iteration of 

U is used to execute the (l + i)
th

 iteration of V. The arcs with 

delays dictate the inter-iteration precedence constraints, 

whereas the arcs without delays represent the intra-iteration 

precedence constraints. The folded hardware architecture is 

also described by hardware DFG. In the hardware DFG, HU, 

denotes the hardware operator that executes the operation U as 

shown in figure 1. All operations processed by HU, collectively 

form an ordered set S, where the ordering of the elements 

represents a unique execution sequence of the tasks in the 

folded operator. Some operations in set S can be null 
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operations denoted as Φ. N represents the folding factor which 

is an important factor in folding. If Nu represents the number of 

operations in S, then the ordering of the operations ranges from 

0 to Nu - 1 and each execution order number corresponds 

directly to a time partition. Let PU denote the level of pipelining 

of the hardware operator HU. The objective is to fold the 

original DFG for a specified folding set to obtain the hardware 

architecture DFG. Interprocessor communication links and the 

storage units required in these links are also obtained. A delay 

or register in the hardware DFG represents a storage unit. 

 

III.  DERIVATION OF FOLDING EQUATIONS 

Folding is a technique for determining control circuits in 

architectures where multiple algorithm operations (such as 

addition operations) are time-multiplexed to a single hardware 

module (such as a pipelined ripple-carry adder) [2]. Folding 

equations have been derived in the past for folding single-rate 

algorithms to single-rate architectures, and for folding single-

rate algorithms to multirate architectures [3]. The basic 

concepts behind using folding to synthesize control circuits for 

time multiplexed architectures are the same for single-rate 

folding and multi-rate folding. The two extremes of this are 

when a fully parallel implementation is used (i.e., each 

algorithm operation is assigned its own functional unit in 

hardware) and when a single processor is used (i.e., the entire 

program is implemented on a single functional unit). 

Consider an arc (also referred to as an edge) connecting U 

and V nodes and with i delays (iD), as in Fig. 1 (a). Let the l
th

 

iteration of nodes U and V be scheduled to execute at time 

NUl+u units and NV+v, respectively, where u and v are the 

folding orders of nodes and which satisfy u[0, NU] and v[0, NV].  

The hardware operators (also referred to as functional units) 

which execute nodes U and V are denoted as HU and HV 

respectively. NU and NV (number of operations) are folded to 

HU and HV respectively. If HU is pipelined by PU stages [10], 

then the result of the l
 th iteration of node U is available at 

NUl+u+PU. .Since arc U→V has i or (w(e)) delays, the result of 

node is used by the (l+i)
th

 iteration of which is executed at 

NV(l+i)+v. 

 

Therefore, the result must be stored for 

DF(U→V)= NV(l+i)+v-(NUl+u+PU) 

              =( NV-NU)l+ NVi- PU+v-u           (1) 

time units. Since it is assumed that DSP programs iterate from 

l=0 to l=∞, practical concerns require NV=NU to avoid the cases 

where DF(U→V) approaches +∞ or -∞ or as gets large. With 

N= NV=NU the folding equation becomes 

DF (U→V) =Ni- PU+v-u             (2)            

which is independent of the iteration number l. Arc U→V maps 

to a path from  HU to HV  in the architecture with DF(U→V) 

delays, and data on this path are input to HV at Nl+v as 

illustrated in Fig. 1(b). 
 

 A folding set is an ordered set of N operations executed by 

the same functional unit. The operations are ordered from 0 to 

N-1. Some of the operations may be null. For example, Folding 

set S1={A1,0,A2} is for folding order N=3. A1 has a folding 

order of 0 and A2 of 2 and    are respectively denoted by (S1|0) 

and (S2|2). For a folded system to be realizable, DF(U→V) ≥ 0 

must hold good for all of the edges in the DFG. Once valid 

folding sets have been assigned, retiming can be used to either 

satisfy this property of determine that the folding sets are not 

feasible. 
 

Folding technique is explained by considering the example 

of an IIR Filter. Consider a Biquad filter shown in Fig. 2 with 

the corresponding folding sets [8]. A Biquad filter is a second 

order infinite impulse response (IIR) filter which is widely used 

in DSP applications. It is a recursive filter which contains two 

poles and two zeros. The output of a Biquad filter depends on 

past outputs as well as past inputs. The folding equations for 

each edge are given in the Table I using equation (2). Retiming 

has to be performed before folding to force causality to the 

system. Retiming is a transformation technique used to change 

the locations of delay elements in a circuit without affecting the 

input/output characteristics of the circuit [7]. 

   

                       Fig. 2: DFG of Biquad Filter.   

 

Retiming is characterized by retiming values for each node 

in the DFG. Retiming only affects the weights of the edges. It 

is basically adding and removing delays on the edges. 

 

TABLE  I 

  Folding Equations and Retiming for folding Constraints  

Edge Folding Equation Retiming for folding 

Constraints 

1→2 DF(1→2) =-3 r(1)-r(2)≤-1 

1→5 DF (1→5)= 0 r(1)-r(5)≤0 

1→6 DF (1→6)= 2 r(1)-r(6)≤0 

1→7 DF (1→7)= 7 r(1)-r(7)≤-1 
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1→8 DF (1→8)= 5 r(1)-r(8)≤1 

3→1 DF(3→1) = 0 r(3)-r(1)≤0 

4→2 DF (4→2)= 0 r(4)-r(2)≤0 

5→3 DF (5→3)= 0 r(5)-r(3)≤0 

6→4 DF (6→4)=-4 r(6)-r(4)≤-1 

7→3 DF (7→3)=-3 r(7)-r(3)≤1 

8→4 DF(8→4) =-3 r(8)-r(4)≤-1 

 

Using retiming, the number of delays on the edge U→V is 

changed from w(e) to wr(e) . 

   wr (e) =i′= w(e)+r(V)-r(U)            (3)   

where wr(e) or i′ is the number of delays on the edge U→V in 

the retimed DFG, and  r(V) and r(U) denotes the retiming value 

of the node U and V respectively. 

Let D′F(U→V) denote the number of folded delays 

obtained by folding the edge U→V in the retimed DFG. 

Ensuring the corresponding edge in the folded hardware has a 

nonnegative number of delays, the constraint D′F(U→V)≥0 

must hold good, implies that, 

Ni′- PU+v-u ≥0            (4) 

Substituting DF(U→V) from (2) and solving for r(U) - r(V) 

results in, 
 

r(U)-r(V) ≤ D(U→V)              (5) 

           N 

Since the retiming values of the nodes are restricted to be 

integers, this can be rewritten as, 

               (6) 

which gives the floor value, which is the largest integer less 

than or equal to the difference value. 

 

Fig. 3: Constraint Graph. 

The set of constraints for the DFG is found using constraint 

graph shown in Fig. 3. There is one such constraint, 

represented as an inequality in Table I for each edge in the 

DFG. The system of inequalities can be solved using Bellman-

Ford algorithm [11]. Using the Bellman Ford algorithm, it is 

found that the set of  constraints has a solution, and one such 

solution is r(1)=-1, r(2)=0, r(3)=-1, r(4)=0, r(5)=-1, r(6)=-1, 

r(7)=-2, r(8)=-1. Using these new retimed values we can find 

new delay between edges using equation (3). Now apply the 

folding equation (4) to find the new delays from which folded 

architecture can be derived from it.  

 
IV. REGISTER MINIMIZATION 

Minimizing the number of registers in DSP architecture is 

important results in the reduction of silicon area. The folded 

structure contains more number of registers because the 

intermediate results needs to be stored. A data sample 

(variable) is live from the time it is produced till it is consumed. 

After the sample is consumed, it is dead. A variable occupies 

one register when it is live. In Lifetime analysis, the number of 

live variables at any time unit is determined, which gives the 

minimum number of registers required to implement the DSP 

program.  

A linear lifetime chart shown in Fig. 4 is used to graphically 

represent the lifetime of each variable in a linear fashion. In a 

linier lifetime chart horizontal lines represent clock cycles and 

the vertical lines present lifetimes clock cycle in which it is 

consumed. The maximum number of live variables at any time 

step is 2, so the minimum number of registers that can be used 

to implement the architecture is 2. 

The lifetime analysis begins with the construction of a 

lifetime table. It uses a matrix transpose operation. We need to 

construct a table with Tinput and Toutput. Tinput is the time unit in 

which the node produces the data Toutput is the latest time that 

the result of the node is used. 

Tinput =  u + Pu                  (7) 

Toutput =  Tinput + max{DF(U→V)}          (8) 

 

Fig. 4: A linear lifetime chart for the Biquad filter. 

The lifetime chart uses the convention that a variable is not live 

during the clock cycle in which it is produced, which is the 

output time of the variable ignoring the latency of the system. 

Once the lifetime table is obtained a life time chart is created. 

During this the periodicity of the circuit needs to be considered. 

After this the number of live variables present in each cycle is 

calculated which gives the minimum number of register 

required in the folded architecture which is 2 in this case. Using 

this, folded architecture which uses minimum registers is 

derived and is shown in Fig. 5. 
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Fig. 5: Folded Biquad Filter with two registers. 

V.  SYNTHESIS RESULTS   

The architectures of unfolded, folded and with minimum 

registers are synthesized in Spartan-3A/3AN device family. 

Spartan FPGA contains basic resources such as slices, IOBs 

(I/O blocks), LUTs (look up tables) and interconnects. Each 

Spartan FPGA slice contains two 4-input LUTs and two flip-

flops. The area utilization of a circuit in FPGA depends on 

mainly number of occupied slices and 4-input LUTs. The 

comparison of the results is shown in Table II and III 

respectively.  
 

A graph representing the slice utilization of three 

architectures is shown in Fig. 6. The unfolded architecture 

gives a slice utilization of 8%. But when the folding is 

performed it reduces to 2% because of the reduction of 

functional units. For this architecture when we perform register 

minimization, the number of register required will get reduced. 

TABLE II 

      Summary of Device Utilization 

Architecture Unfolded 

 

Folded Folded with min. 

registers  

# of Slices 60 18 14 

# of LUTs 100 8 8 

# of Slice FFs 32 32 24 

 

TABLE III 

      Percentage (%) of Device Utilization  

Architecture Unfolded 

 

Folded Folded with min. 

registers 

# of Slices 8 2 1 

#of LUTs 7 0(.0056) 0(.0056) 

# of Slice FFs 2 2 1 

The synthesis report of the third architecture will give a 

utilization of 1% which is significantly less compared to the 

first architecture. 

  

0%

2%

4%

6%

8%

Unfolded Folded Folded with

Minimized

Registers 

Slice Utilization

 

                Fig. 6: Comparison of Slice Utilization. 

VI.  CONCLUSION 

Progress has been made towards the reduction of area using 

process technology. Here a methodology is proposed which can 

reduce the functional units in the design phase of DSP 

architectures. The methodology described above can be fully 

automated in Matlab to get a better circuit, especially in VLSI-

DSP area to minimize the silicon area. Also different 

architectures are synthesized and the device utilization is 

compared. Further studies can be taken on implementing this 

technique for multirate systems. 
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