

Abstract— This paper presents a methodology to reduce the

area of DSP architecture on silicon using folding. Folding is

particularly important and has impact on large DSP

circuits/architectures. This technique is powerful to reduce

functional units in DSP circuits/architectures which mainly

depend on folding factor. The folding technique is used to

derive the control circuitry of the hardware architectures

such as functional units (adders and multipliers). Folding

technique also supports complex operations with time

multiplexing. The time multiplexing reduces the area by

repeating computations on the same hardware unit. Apart

from folding technique, register minimization technique is

used to minimize the number of registers. This methodology

is verified using Spartan 3A/3AN device family. The

comparison table of unfolded and folded circuits shows the

better performance of the folding algorithm.

Index Terms: DFG, folding, foldingfactor, DSP, retiming,

Lifetime analysis.

I. INTRODUCTION

The widespread use of digital representation of signals for

transmission and storage has created challenges in the area of

digital signal processing (DSP). In response to these

challenges, DSP techniques have emerged for tasks such as

area reduction and power reduction [1]. DSP is used in

numerous applications such as video compression, modems,

multimedia, speech processing and biomedical signal

processing. The field of DSP has always been driven by the

advances in DSP applications and in VLSI technologies.

These implementations are required to satisfy the enforced

sampling rate constraints of the real time DSP applications and

use less space and power consumption. DSP computation is

different from general purpose computation in the sense that

the DSP programs are nonterminating programs. In DSP

computation the same program is executed repetitively on an

infinite time series. The nonterminating nature can be exploited

to design more efficient DSP systems by exploiting the

dependency of tasks both within iteration and among multiple

iterations. These algorithms need to be modified for the design

of low speed or low area implementations. In DSP architectures

it is important to minimize the silicon area of the integrated

circuits, which is achieved by reducing the number of

functional units such as adders and multipliers. The process of

executing many algorithm operations in one hardware

operator is referred to as folding [2]. The folding technique is

used to determine the control circuits in DSP architectures

where multiple algorithm operations are time multiplexed to a

single functional unit such as a pipelined adder [4], [5]. By

executing multiple algorithm operations on a single functional

unit, the number of functional units in the implementation is

reduced, resulting in smaller silicon area. Folding technique

can also be used for synthesis of DSP architectures that can be

operated using single or multiple clocks.

The folding technique can be used in any of the DSP

architectures where there is a requirement of substantial area

reduction. Folding provides a means of trading area for time in

DSP architectures. Folding equations can be used to

systematically determine the control circuitry for the

architecture from a data flow graph. Folding can also be used to

address other related problems in high-level synthesis in a

formal manner.

The paper is organized as follows. Section II reviews some

fundamentals of data flow graphs. Section III derives the

folding equations which are used to synthesize the control

circuits for the DSP architectures. Register minimization is

addressed in the section IV. In section V synthesis results are

given. Conclusions are stated in section VI.

II. DATAFLOW GRAPHS

Data flow graphs (DFGs) are used in the simulation of

computer systems. The main advantage of data flow graphs

over other models of parallel processors is their compactness

and general amenability for direct interpretation. That is, the

translation from the conceived system to a DFG is straight-

forward and, once accomplished, it is equally straightforward

to determine by inspection which represent the aspects of the

system. Because of the hierarchical nature and the modularity

of data flow graphs, both software tasks and hardware units can

be modeled using DFGs [9], [11-13].

The tasks of the DSP algorithm are assumed to be executed

repetitively. Each node in the DFG represents an algorithm

operation or task, and any arc U → V with i delay (where i is

any nonnegative integer) implies that the result of i
th

 iteration of

U is used to execute the (l + i)
th

 iteration of V. The arcs with

delays dictate the inter-iteration precedence constraints,

whereas the arcs without delays represent the intra-iteration

precedence constraints. The folded hardware architecture is

also described by hardware DFG. In the hardware DFG, HU,

denotes the hardware operator that executes the operation U as

shown in figure 1. All operations processed by HU, collectively

form an ordered set S, where the ordering of the elements

represents a unique execution sequence of the tasks in the

folded operator. Some operations in set S can be null

Rakhi S
1
, PremanandaB.S

2
, Mihir Narayan Mohanty

3

1
Atria Institute of Technology,

2
East Point College of Engineering &Technology, Bangalore.,

3
ITER, Siksha „O‟

Anusandhan University, Bhubaneswar.

.

Synthesis of DSP Systems using Data Flow Graphs

for Silicon Area Reduction

Rakhi S et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 337-341

337

mailto:rakhinit@rediffmail.com
mailto:premanandabs@gmail.com
mailto:mihir.n.mohanty@gmail.com

operations denoted as Φ. N represents the folding factor which

is an important factor in folding. If Nu represents the number of

operations in S, then the ordering of the operations ranges from

0 to Nu - 1 and each execution order number corresponds

directly to a time partition. Let PU denote the level of pipelining

of the hardware operator HU. The objective is to fold the

original DFG for a specified folding set to obtain the hardware

architecture DFG. Interprocessor communication links and the

storage units required in these links are also obtained. A delay

or register in the hardware DFG represents a storage unit.

III. DERIVATION OF FOLDING EQUATIONS

Folding is a technique for determining control circuits in

architectures where multiple algorithm operations (such as

addition operations) are time-multiplexed to a single hardware

module (such as a pipelined ripple-carry adder) [2]. Folding

equations have been derived in the past for folding single-rate

algorithms to single-rate architectures, and for folding single-

rate algorithms to multirate architectures [3]. The basic

concepts behind using folding to synthesize control circuits for

time multiplexed architectures are the same for single-rate

folding and multi-rate folding. The two extremes of this are

when a fully parallel implementation is used (i.e., each

algorithm operation is assigned its own functional unit in

hardware) and when a single processor is used (i.e., the entire

program is implemented on a single functional unit).

Consider an arc (also referred to as an edge) connecting U

and V nodes and with i delays (iD), as in Fig. 1 (a). Let the l
th

iteration of nodes U and V be scheduled to execute at time

NUl+u units and NV+v, respectively, where u and v are the

folding orders of nodes and which satisfy u[0, NU] and v[0, NV].

The hardware operators (also referred to as functional units)

which execute nodes U and V are denoted as HU and HV

respectively. NU and NV (number of operations) are folded to

HU and HV respectively. If HU is pipelined by PU stages [10],

then the result of the l
 th iteration of node U is available at

NUl+u+PU. .Since arc U→V has i or (w(e)) delays, the result of

node is used by the (l+i)
th

 iteration of which is executed at

NV(l+i)+v.

Therefore, the result must be stored for

DF(U→V)= NV(l+i)+v-(NUl+u+PU)

 =(NV-NU)l+ NVi- PU+v-u (1)

time units. Since it is assumed that DSP programs iterate from

l=0 to l=∞, practical concerns require NV=NU to avoid the cases

where DF(U→V) approaches +∞ or -∞ or as gets large. With

N= NV=NU the folding equation becomes

DF (U→V) =Ni- PU+v-u (2)

which is independent of the iteration number l. Arc U→V maps

to a path from HU to HV in the architecture with DF(U→V)

delays, and data on this path are input to HV at Nl+v as

illustrated in Fig. 1(b).

 A folding set is an ordered set of N operations executed by

the same functional unit. The operations are ordered from 0 to

N-1. Some of the operations may be null. For example, Folding

set S1={A1,0,A2} is for folding order N=3. A1 has a folding

order of 0 and A2 of 2 and are respectively denoted by (S1|0)

and (S2|2). For a folded system to be realizable, DF(U→V) ≥ 0

must hold good for all of the edges in the DFG. Once valid

folding sets have been assigned, retiming can be used to either

satisfy this property of determine that the folding sets are not

feasible.

Folding technique is explained by considering the example

of an IIR Filter. Consider a Biquad filter shown in Fig. 2 with

the corresponding folding sets [8]. A Biquad filter is a second

order infinite impulse response (IIR) filter which is widely used

in DSP applications. It is a recursive filter which contains two

poles and two zeros. The output of a Biquad filter depends on

past outputs as well as past inputs. The folding equations for

each edge are given in the Table I using equation (2). Retiming

has to be performed before folding to force causality to the

system. Retiming is a transformation technique used to change

the locations of delay elements in a circuit without affecting the

input/output characteristics of the circuit [7].

 Fig. 2: DFG of Biquad Filter.

Retiming is characterized by retiming values for each node

in the DFG. Retiming only affects the weights of the edges. It

is basically adding and removing delays on the edges.

TABLE I

 Folding Equations and Retiming for folding Constraints

Edge Folding Equation Retiming for folding

Constraints

1→2 DF(1→2) =-3 r(1)-r(2)≤-1

1→5 DF (1→5)= 0 r(1)-r(5)≤0

1→6 DF (1→6)= 2 r(1)-r(6)≤0

1→7 DF (1→7)= 7 r(1)-r(7)≤-1

Rakhi S et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 337-341

338

1→8 DF (1→8)= 5 r(1)-r(8)≤1

3→1 DF(3→1) = 0 r(3)-r(1)≤0

4→2 DF (4→2)= 0 r(4)-r(2)≤0

5→3 DF (5→3)= 0 r(5)-r(3)≤0

6→4 DF (6→4)=-4 r(6)-r(4)≤-1

7→3 DF (7→3)=-3 r(7)-r(3)≤1

8→4 DF(8→4) =-3 r(8)-r(4)≤-1

Using retiming, the number of delays on the edge U→V is

changed from w(e) to wr(e) .

 wr (e) =i′= w(e)+r(V)-r(U) (3)

where wr(e) or i′ is the number of delays on the edge U→V in

the retimed DFG, and r(V) and r(U) denotes the retiming value

of the node U and V respectively.

Let D′F(U→V) denote the number of folded delays

obtained by folding the edge U→V in the retimed DFG.

Ensuring the corresponding edge in the folded hardware has a

nonnegative number of delays, the constraint D′F(U→V)≥0

must hold good, implies that,

Ni′- PU+v-u ≥0 (4)

Substituting DF(U→V) from (2) and solving for r(U) - r(V)

results in,

r(U)-r(V) ≤ D(U→V) (5)

 N

Since the retiming values of the nodes are restricted to be

integers, this can be rewritten as,

 (6)

which gives the floor value, which is the largest integer less

than or equal to the difference value.

Fig. 3: Constraint Graph.

The set of constraints for the DFG is found using constraint

graph shown in Fig. 3. There is one such constraint,

represented as an inequality in Table I for each edge in the

DFG. The system of inequalities can be solved using Bellman-

Ford algorithm [11]. Using the Bellman Ford algorithm, it is

found that the set of constraints has a solution, and one such

solution is r(1)=-1, r(2)=0, r(3)=-1, r(4)=0, r(5)=-1, r(6)=-1,

r(7)=-2, r(8)=-1. Using these new retimed values we can find

new delay between edges using equation (3). Now apply the

folding equation (4) to find the new delays from which folded

architecture can be derived from it.

IV. REGISTER MINIMIZATION

Minimizing the number of registers in DSP architecture is

important results in the reduction of silicon area. The folded

structure contains more number of registers because the

intermediate results needs to be stored. A data sample

(variable) is live from the time it is produced till it is consumed.

After the sample is consumed, it is dead. A variable occupies

one register when it is live. In Lifetime analysis, the number of

live variables at any time unit is determined, which gives the

minimum number of registers required to implement the DSP

program.

A linear lifetime chart shown in Fig. 4 is used to graphically

represent the lifetime of each variable in a linear fashion. In a

linier lifetime chart horizontal lines represent clock cycles and

the vertical lines present lifetimes clock cycle in which it is

consumed. The maximum number of live variables at any time

step is 2, so the minimum number of registers that can be used

to implement the architecture is 2.

The lifetime analysis begins with the construction of a

lifetime table. It uses a matrix transpose operation. We need to

construct a table with Tinput and Toutput. Tinput is the time unit in

which the node produces the data Toutput is the latest time that

the result of the node is used.

Tinput = u + Pu (7)

Toutput = Tinput + max{DF(U→V)} (8)

Fig. 4: A linear lifetime chart for the Biquad filter.

The lifetime chart uses the convention that a variable is not live

during the clock cycle in which it is produced, which is the

output time of the variable ignoring the latency of the system.

Once the lifetime table is obtained a life time chart is created.

During this the periodicity of the circuit needs to be considered.

After this the number of live variables present in each cycle is

calculated which gives the minimum number of register

required in the folded architecture which is 2 in this case. Using

this, folded architecture which uses minimum registers is

derived and is shown in Fig. 5.

Rakhi S et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 337-341

339

Fig. 5: Folded Biquad Filter with two registers.

V. SYNTHESIS RESULTS

The architectures of unfolded, folded and with minimum

registers are synthesized in Spartan-3A/3AN device family.

Spartan FPGA contains basic resources such as slices, IOBs

(I/O blocks), LUTs (look up tables) and interconnects. Each

Spartan FPGA slice contains two 4-input LUTs and two flip-

flops. The area utilization of a circuit in FPGA depends on

mainly number of occupied slices and 4-input LUTs. The

comparison of the results is shown in Table II and III

respectively.

A graph representing the slice utilization of three

architectures is shown in Fig. 6. The unfolded architecture

gives a slice utilization of 8%. But when the folding is

performed it reduces to 2% because of the reduction of

functional units. For this architecture when we perform register

minimization, the number of register required will get reduced.

TABLE II

 Summary of Device Utilization

Architecture Unfolded

Folded Folded with min.

registers

of Slices 60 18 14

of LUTs 100 8 8

of Slice FFs 32 32 24

TABLE III

 Percentage (%) of Device Utilization

Architecture Unfolded

Folded Folded with min.

registers

of Slices 8 2 1

#of LUTs 7 0(.0056) 0(.0056)

of Slice FFs 2 2 1

The synthesis report of the third architecture will give a

utilization of 1% which is significantly less compared to the

first architecture.

0%

2%

4%

6%

8%

Unfolded Folded Folded with

Minimized

Registers

Slice Utilization

 Fig. 6: Comparison of Slice Utilization.

VI. CONCLUSION

Progress has been made towards the reduction of area using

process technology. Here a methodology is proposed which can

reduce the functional units in the design phase of DSP

architectures. The methodology described above can be fully

automated in Matlab to get a better circuit, especially in VLSI-

DSP area to minimize the silicon area. Also different

architectures are synthesized and the device utilization is

compared. Further studies can be taken on implementing this

technique for multirate systems.

 REFERENCES

 [1] Dejan Markovic, Borivoje Nikolic, Robert W.

Brodersen, “Power and Area Efficient VLSI

Architectures for communication Signal processing”,

Berkeley Wireless Research Center, University of

California at Berkeley.

 [2] Parhi K.K, Wang. C.Y, Brown A. P, “Synthesis of

control circuits in folded pipelined DSP architectures”,

IEEE Journal of Solid-State Circuits, Volume 27, Jan

1992, pp. 29 – 43.

 [3] Denk T.C, Parhi K.K “Synthesis of folded pipelined

architectures for multirate DSP algorithms”, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, Volume 6, Dec 1998, pp. 595 – 607.

 [4] Rajopadhye S, Kiaei, S “A folding transformation for

VLSI IIR filter array design, International Conference

on Acoustics, Speech, and Signal Processing, Volume

2, 1991, pp. 1237-1240 .

 [5] Keshab K Parhi, “VLSI Digital Signal Processing

systems – Design & implementations”, John Wiley &

Sons, Inc.

 [6] K. K. Parhi, “Algorithm transformation techniques for

concurrent processors”, Proc. IEEE (Special Issue on

Supercomputer Technology), Dec 1989, pp.1879–1895.

 [7] C. Leiserson, F. Rose, and J Saxe, Optimizing

Synchronous circuitry by retiming,” in Third Caltech

Conf. VLSI, pp.87-116, 1983.

[8] L. B. Jackson, J.F. Kaiser, and H.S. McDonald,” An

approach to implementation of digital filters” IEEE

Trans. Audio Electroacoust. Vol.AE-16, no.3, pp.413.

[9] Edward Ashford Lee, “Consistency in Data Flow

Graph”, IEEE transactions on parallel and distributed

systems, vol 2, pp.223-235, 1991.

Rakhi S et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 337-341

340

[10] Parhi K.K, Wang., “Automatic generation of control

circuits in pipelined DSP architectures”, in Proc. IEEE

Int.Conf.Computer Design,sept.1990, pp. 324 – 327.

[11] Boros, E. Hammer, P. L. Shamir, R. Rutgers Univ.,

New Brunswick, NJ, “A polynomial algorithm for

balancing acyclic data flow graphs,” IEEE

Transactions, vol. 41, pp. 1380–1385, 1992.

[12] Edward Ashford Lee,” Consistency in Data Flow

Graph”, IEEE transactions on parallel and distributed

systems, vol 2, pp.223 235, 1991.

[13] J. L. Gaudiot and M.D.Ercegovac, "Performance

analysis of data flow computers with variable resolution

actors," in Proc. 4th Int.Conf. Distrib. Comput. Syst.,

San Francisco, CA, May 1984, pp. 2-9.

Rakhi S et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 337-341

341

