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Abstract:-This paper describe the multithreaded execution 
and data race detectors  which are commonly viewed as 
debugging tools.The C++ Standard defines single-threaded 
program execution. Basically, multithreaded execution 
requires a much more refined memory and execution 
model. C++ threading libraries are in the awkward 
situation of specifying an extended memory model for C++ 
in order to specify program execution. We suggest 
integrating a memory model suitable for multithreaded 
execution in the C++ Standard. We wants to make fast and 
error free program .but ideally it is not possible  To 
overcome this problem we give first concept threading and 
ssecond concept in this paper is data race detector. They 
would allow us to give precise, simple, and safe semantics 
to shared variables in multithreaded programs, a problem 
that has so far defied a complete solution. 
Keyword:-atomicity,data race. 

I INTRODUCTION 
multithreaded execution. is use in most of today’s 
programming. C++ is commonly used as part of multithreaded 
applications, sometimes with either direct calls into an OS-
provided threading library or with the aid of an intervening 
layer that provides a platform-neutral interface. Properties 
critical for reliable, efficient, and correct multithreaded 
execution are left unspecified The C++ Standard specifies 
program execution in terms of observable behavior, which in 
turn describes sequential execution on an implicitly single-
threaded abstract machine. The main sketch of attack is: 
1. Specification of an abstract memory model describing the 
interactions between threads and memory. 
2. Application of this model to existing aspects of the C++ 
specification to replace the current implicitly sequential 
semantics. This will entail new constraints on how compilers 
can emit and optimize code. In particular, this will entail a 
reworking of the specification of volatile to provide 
useful multithreaded semantics. 
3. Introduction of a small number of standard library classes 
providing standardized access to atomic update operations 
(such as compare_and_set). These classes will have 
multithreaded semantics integrated with the above 

specifications for other memory operations. Thus, compilers 
will need to treat these as intrinsic. These operations form the 
low-level basis for modern multithreaded synchronization 
constructs such as locks, and are also required in the 
construction of efficient non-blocking data structures. 
4. Definition of a standard thread library that provides similar 
functionality to threads and Win32 threads, but meshes with 
the rest of the C++ standard.  
 Secondly Data races are well-recognized as a common source 
of particularly difficult-to-diagnose bugs in parallel programs. 
As a result many tools have been built to explicitly detect data 
races, either at compile 
time, or as the program is executing).Although code 
correctness typically requires stronger properties, such as 
atomicity[7] or even determinacy, data-race-freedom remains 
interesting since it is a well-defined condition that is easy to 
check, even in the absence of any additional programmer 
supplied specifications. This is particularly true for a number 
of  important language specifications, notably the expected 
upcoming revisions of the C and C++ language standards [14, 
11, 15] and the much earlier Posix threads [10] and Ada [17] 
standards, that explicitly treat all data races as programmer 
errors [1]. In these 
languages, an accurate (no false positives) data race detector, 
such as [6] or [8], by definition diagnoses only actual errors 
 
II WHY DATA RACE IS VIEWED AS DEBUGGER TOOL 
There are two additional reasons we would really like to see 
an accurate mechanism for detecting and avoiding data races, 
e.g. by throwing an exception as in [6]:  
1. Data-race-free programs are independent of the granularity 
at which memory accesses are performed. They exhibit the 
same behavior on a machine that accesses memory a byte-at-
a-time as it does if memory is accessed 64 bits at a time. 
Similarly, accesses to library or user-defined synchronization-
free data structures behave atomically. In both cases, a half-
updated data structure can’t be observed by another thread, 
since the observer thread would introduce a data race.Note 
that this property is orthogonal to sequential consistency. 
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2. It has proven to be very difficult to define the meaning of 
programs with data races in a way that both disallows 
behavior that can result in blatant security holes, and allows 
simple meaning preserving 
compiler transformations on source programs. 
We can assurance such ordering by avoiding data races. There 
are two common approaches to doing so: 
1. Data races result in “undefined behavior”. This solves the 
problem in C++0x [4, 11], except in the  presence of the 
previously mentioned esoteric library calls. 
2. Statically enforce the absence of data races. 

III THE BEHAVIOR OF THERADS TOWARDS BASIC 
MEMORY OPERATIONS 

A memory model explore  the behavior of threads with respect 
to basic memory operations – mainly reads and writes of 
variables potentially accessible across multiple threads. The 
main questions are raised by a memory model  nclude as 
follow: 
Atomicity: Which memory operations have indivisible 
effects? 
Visibility: Under what conditions will the effects of a write 
action by one thread be seen by a read by another thread? 
Ordering: Under what conditions are sequences of memory 
operations by one or more threads guaranteed to be visible in 
the same order by other threads? 
As such, the process of defining a sound memory model for 
C++ can reuse the years-long effort that was invested in 
defining, peer-reviewing, refining, and debugging the 
mentioned formal model. However  all above questions are  
related to hardware but still work is done on it.In other word 
,work on progress. 

IV MAPING OF MEMORY MODLE 
There are various kind of memory actions. and after that next  
for a language specification is to map these notions to all of 
the memory-related constructions in the language. This 
process entails nailing down a large set of “small issues” that 
are necessary for programmers to be able to predict and 
control effects. Areas that we have so far identified include: 
Atomicity A given platform may guarantee atomicity only for 
reads and writes of certain bit widths and alignments. The 
spec must permit these to vary, and must therefore provide 
some means for programs to query these properties. 
Extra writes There are several cases in C++ in which 
compilers and machines have historically been permitted to 
issue writes that are not obvious from inspection of source 
code. The most notable examples involve structures with 
small fields. For example, given: 
struct S { short a; char b; char c; } s; 
an assignment such as s.a = 0 might be executed as if the code 
were *(int*)&s = 0 if a compiler infers from context that b and 
c are zero as well, as in the following example: 
void Fun(S& s) { 
if (s.b == 0 && s.c == 0) { 
s.a = 0; 
} 
} 

It is not expected at best in a multithreaded context in which 
the other fields were also being assigned concurrently. A spec 
must clearly define whether and when such compiler 
transformations remain legal. 
Volatile data In the current language spec, the volatile 
qualifier is mainly used to indicate guaranteed order of reads 
and writes within single threaded semantics—for example for 
device control registers, memory mapped I/O, or opaque flow 
(as in setjmp or interrupts). In a multithreaded language, it 
may be useful for volatile to take on the extra burden of 
constraining inter-thread visibility and ordering properties. 
There are a few options for the detailed semantics. In the 
simplest, volatile reads act as acquire and writes as release. 
This has the virtue of being 
relatively easy to use by programmers who are not intimately 
familiar with memory models. For example, the infamous 
“double-checked locking” idiom [3] works as expected under 
these rules if references are declared as volatile (and other 
lock-based rules below are followed). This has the 
disadvantage of imposing “heavier” constraints on the 
compiler and processor than necessary in very performance-
sensitive applications. However, optimizers can often 
eliminate unnecessary operations (such as consolidating 
several consecutive acquire and release operations into 
one). 
Opaque calls One anxiety about moving to multithreaded 
specifications is that compilers may become excessively 
conservative when compiling code with opaque function 
calls—flushing and reloading registers and/or issuing memory 
barriers in case the called function’s effects depend on this. It 
may be desirable to allow programmers to control this using 
some kind of qualifier. Options include those with defaults in 
both directions; for illustration, assuming lack of effects 
unless a function is qualified as, say, mutable; versus 
assuming effects unless qualified with some extended form of 
const. Alternatively, or in addition, the spec could include a 
means for programmers to tell compilers that a certain 
program is either definitely single-threaded or definitely 
multithreaded, as a way of controlling certain 
optimizations. Further exploration of options and their 
consequences is needed. These considerations are very related 
to an existing C++ standardization  proposal [2]. 

V MULTITHERADING SYNCHRONIZATION AND 
COORDINATION 

Atomic update operations (since linked memory barrier 
instructions, which impose memory ordering constraints on 
the processor) form the basis for fundamentally all modern 
multithreaded synchronization and coordination. While there 
is some variety across architectures in the nature and style of 
these instructions, there is adequate commonality in current 
and medium-term-future systems to define a small set of 
intrinsic that can be used for moveable concurrent 
programming. There are several stylistic options here. One 
approach is to define three small intrinsified inclinable 
classes, one each holding a single value of type int, long, and 
(templated) pointer, and supporting operations such as: 
namespace std { 
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class atomic_int { 
public: 
int get(); 
int set(int v); 
bool compare_and_set(int expected_value, int new_value); 
int weak_get(); 
int weak_set(int v); 
bool weak_compare_and_set(int expected_value, 
int new_value); 
// other minor convenience functions, including: 
int get_and_increment(); 
int get_and_add(int v); 
// ... 
}; 
} 
The major magnetism of this approach is that it appears to be 
implement able on essentially any platform. Even those 
machines without such primitives can emulate them using 
private locks. And even though some machines (such as 
PowerPC) support LL/SC (load-linked, store-conditional) 
instead of CAS (compare-and-set), in live out, nearly all 
usages of LL/SC are to perform CAS (the reverse is 
impossible), so there would rarely be incentive to resort to 
non-standardized, non-portable constructions even on these 
platforms. The thought of the “weak” versions is to permit 
finer control of atomics and barriers than otherwise available 
using volatile or other constructions. For example, a weak set 
need only perform a store ordering barrier, not a full release, 
which may be cheaper on some machines.  

VI LIBRARIES FOR THERADING SUPPORT 
A this time, multithreaded C++ programs tend to rely first and 
foremost on one of a fairly small set of libraries for threading 
support: POSIX threads, Win32, ACE, and Boost. These hold 
many more similarities than differences. The chance arises to 
provide a standard library that unadventurously abstracts over 
such packages. Even if this is not done, such libraries must, to 
conform to the rest of this proposal, spell out their basic 
locking primitives in terms of the memory model. All basic 
locks should and do make available semantics in accord with 
the basic gain and release actions specified by the Standard. 
Compilers in turn must respect these semantics. The 
technicalities to ensure this would rely on how the opaque call 
issue mentioned above is resolved. In this draft we do not 
even sketch out the APIs of this library. 

VII. THE C++ MODLE WITHOUT LOW LEVEL 
ATOMICS 

Memory operations are viewed as operating on abstract 
memory locations. Each scalar value occupies a separate 
memory location, except that contiguous sequences of bit-
fields inside the same innermost struct or class declaration are 
viewed as a single location The remainder of the C++ standard 
was modified to define a sequenced-before relation on 
memory operations performed by a single thread [5]. This is 
analogous to the program order relation in Java and other 
work on memory models. Unlike prior work, this is only a 
partial order per thread, reflecting undefined argument 
evaluation order. Define a memory action to consist of: 

1. The type of action; i.e., lock, unlock, atomic load, atomic 
store, atomic read-modify-write, load, or store. All but the last 
two are customarily referred to as synchronization operations, 
since they are used to  communicate between threads. The last 
two are referred to as data operations. 
2. A label identifying the corresponding program point. 
3. The values read and written. Bit-field updates can be 
modeled as a load of the sequence of contiguous bit-fields, 
followed by a store to the entire sequence. Define a thread 
execution to be a set of memory actions, together with a 
partial order corresponding to the sequenced-before ordering. 
Define a sequentially consistent execution of a program to be 
aset of thread executions, together with a total order <T on all 
the memory actions, which satisfies the constraints: 
1. Each thread execution is internally consistent, in that it 
corresponds to a correct sequential execution of that thread, 
given the values read from memory, and respects the ordering 
of operations implied by the sequenced-before relation. 
2. T is consistent with the sequenced-before orders; i.e., if a is 
sequenced before b then a <T b. 
3. Each load, lock, and read-modify-write operation reads the  
value from the last preceding write to the same location 
according to <T . The last operation on a given lock preceding 
an unlock must be a lock operation performed by the same 
thread. Effectively this requires that <T is just an interleaving 
of the individual thread actions. Two memory operations 
conflict if they access the same memory  location, and at least 
one of them is a store, atomic store, or atomic read-modify-
write operation. In a sequentially consistent execution, two 
memory operations from different threads form a type 1 data 
race if they conflict, at least one of them is a data operation, 
and they are adjacent in <T (i.e., they may be executed 
concurrently). We can now specify the C++ memory model 
simply as: _ If a program (on a given input) has a sequentially 
consistent execution with a (type 1) data race, then its 
behavior is undefined.   Otherwise, the program (on the same 
input) behaves according to one if its sequentially consistent 
executions. 

VIII SEMANTICS OF DATA RACES 
it is critical to define the semantics of all programs, including 
those with data races. Java must support the execution of 
untrusted “sandboxed” code. Clearly such code can introduce 
data races, and the language must guarantee that at least basic 
security properties are not violated, even in the presence of 
such races. Hence the Java memory model [9] is careful to 
give reasonable semantics to programs with data races, even at 
the cost of significant complexity in the specification. For 
C++, there is no such issue. Initially, there was still some 
concern that we should limit the allowable behavior for 
programs with races. However, in the end, we decided to leave 
the semantics  of such programs completely undefined. In the 
current working paper for the C++ standard, in spite of 
discussions such as [10]  there are no benign data races. The 
basic arguments for undefined data race semantics in C++ are: 
1. Although generally under-appreciated, it is effectively the 
status quo. Pthreads states [12] “Applications shall ensure that 
access to any memory location by more than one thread of 
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control (threads or processes) is restricted such that no thread 
of control can read or modify a memory location while 
another thread of control may be modifying it.” As we 
mention in the introduction, Ada earlier took the same 
approach. The intent behind win32 threads appears to have 
been similar.  
2. Since the C++ working paper provides low-level atomics 
with very weak, and hence cheaply implement able, ordering 
properties, there is little to be gained by allowing races, other 
than allowing code to be obfuscated. We effectively require 
only that such races be annotated by the programmer. Since 
the result is usually exceedingly subtle, we believe this should 
be required by any reasonable coding standard in any case. 
3. Giving Java-like semantics to data races may greatly 
increase the cost of some C++ constructs. It would 
presumably require that we not expose uninitialized virtual 
function tables, even in the event of a race, since those could 
otherwise result in a wild branch. This in turn often requires 
fences on object construction. In Java, this is arguably less 
major, since object construction is always associated with 
memory allocation, which typically already carries some cost. 
This does not apply to C++. 
4. Current compiler optimizations often assume that objects 
do not change unless there is an intervening assignment 
through a potential alias. Violating such a built-in assumption 
can cause very complicated effects that will be very hard to 
explain to a programmer, or to delimit in the standard. We 
believe this assumption is sufficiently ingrained in current 
optimizers that it would be very difficult to effectively remove 
it. 

IX CONSULATION 
In this paper ,we give the outline about the foundation of 
multithreading I and data  race. We try to represent the 
memory model  for multithreading and also map it .Data race 
is debugger tool in this respect of threading .  In return for 
avoiding data races or, equivalently, identifying variables and 
other objects involved in data races as atomic, most users can 
ignore the intricacies of hardware memory models and 
compiler optimizations; they are guaranteed sequentially 
consistent execution. All of this can be based on the most 
intuitive definition of a data race: simultaneous execution of 
conflicting operations. The one place in which modern 
machine architectures do unavoidably show through slightly is 
that updates to adjacent bit-fields conflict; otherwise, 
operations conflict only when they touch the same object 
From the compiler implementors perspective, we preserve the 
guarantee that ordinary variables do not appear to change 
asynchronously. Hence, standard program analyses remain 
valid, except for objects of atomic type, even in the presence 
of threads. In return, the implementation must refrain from 
introducing user visible data races, for example, as a result of 
rewriting adjacent structure fields or register promotion. More 
complete implementation guidelines are given in [13]. 
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