
An Abstract memory model describing the
interaction between thread and memory with

debugger tools
Shruti Sandal#1

,
 Dr.Raghuraj Singh*2 ,Abdul Jabbar Khilji#3,,Shashi Shekhar Ranga#4, sanjay tejasvee#5

#Assistant professor
Department Of Computer Application

Engineering College Bikaner

*Head of Department of Computer Science & Engineering Department,
H.B.T.I., Kanpur

#1shrutisandal@yahoo.com,#3khiljisania746@gmail.com,#4ranga.ssr@gmail.com,
#5sanjaytejasvee@gmail.com

*raghurajsingh@rediffmail.com

Abstract:-This paper describe the multithreaded execution
and data race detectors which are commonly viewed as
debugging tools.The C++ Standard defines single-threaded
program execution. Basically, multithreaded execution
requires a much more refined memory and execution
model. C++ threading libraries are in the awkward
situation of specifying an extended memory model for C++
in order to specify program execution. We suggest
integrating a memory model suitable for multithreaded
execution in the C++ Standard. We wants to make fast and
error free program .but ideally it is not possible To
overcome this problem we give first concept threading and
ssecond concept in this paper is data race detector. They
would allow us to give precise, simple, and safe semantics
to shared variables in multithreaded programs, a problem
that has so far defied a complete solution.
Keyword:-atomicity,data race.

I INTRODUCTION
multithreaded execution. is use in most of today’s
programming. C++ is commonly used as part of multithreaded
applications, sometimes with either direct calls into an OS-
provided threading library or with the aid of an intervening
layer that provides a platform-neutral interface. Properties
critical for reliable, efficient, and correct multithreaded
execution are left unspecified The C++ Standard specifies
program execution in terms of observable behavior, which in
turn describes sequential execution on an implicitly single-
threaded abstract machine. The main sketch of attack is:
1. Specification of an abstract memory model describing the
interactions between threads and memory.
2. Application of this model to existing aspects of the C++
specification to replace the current implicitly sequential
semantics. This will entail new constraints on how compilers
can emit and optimize code. In particular, this will entail a
reworking of the specification of volatile to provide
useful multithreaded semantics.
3. Introduction of a small number of standard library classes
providing standardized access to atomic update operations
(such as compare_and_set). These classes will have
multithreaded semantics integrated with the above

specifications for other memory operations. Thus, compilers
will need to treat these as intrinsic. These operations form the
low-level basis for modern multithreaded synchronization
constructs such as locks, and are also required in the
construction of efficient non-blocking data structures.
4. Definition of a standard thread library that provides similar
functionality to threads and Win32 threads, but meshes with
the rest of the C++ standard.
 Secondly Data races are well-recognized as a common source
of particularly difficult-to-diagnose bugs in parallel programs.
As a result many tools have been built to explicitly detect data
races, either at compile
time, or as the program is executing).Although code
correctness typically requires stronger properties, such as
atomicity[7] or even determinacy, data-race-freedom remains
interesting since it is a well-defined condition that is easy to
check, even in the absence of any additional programmer
supplied specifications. This is particularly true for a number
of important language specifications, notably the expected
upcoming revisions of the C and C++ language standards [14,
11, 15] and the much earlier Posix threads [10] and Ada [17]
standards, that explicitly treat all data races as programmer
errors [1]. In these
languages, an accurate (no false positives) data race detector,
such as [6] or [8], by definition diagnoses only actual errors

II WHY DATA RACE IS VIEWED AS DEBUGGER TOOL
There are two additional reasons we would really like to see
an accurate mechanism for detecting and avoiding data races,
e.g. by throwing an exception as in [6]:
1. Data-race-free programs are independent of the granularity
at which memory accesses are performed. They exhibit the
same behavior on a machine that accesses memory a byte-at-
a-time as it does if memory is accessed 64 bits at a time.
Similarly, accesses to library or user-defined synchronization-
free data structures behave atomically. In both cases, a half-
updated data structure can’t be observed by another thread,
since the observer thread would introduce a data race.Note
that this property is orthogonal to sequential consistency.

Shruti Sandal et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 324-328

324

2. It has proven to be very difficult to define the meaning of
programs with data races in a way that both disallows
behavior that can result in blatant security holes, and allows
simple meaning preserving
compiler transformations on source programs.
We can assurance such ordering by avoiding data races. There
are two common approaches to doing so:
1. Data races result in “undefined behavior”. This solves the
problem in C++0x [4, 11], except in the presence of the
previously mentioned esoteric library calls.
2. Statically enforce the absence of data races.

III THE BEHAVIOR OF THERADS TOWARDS BASIC
MEMORY OPERATIONS

A memory model explore the behavior of threads with respect
to basic memory operations – mainly reads and writes of
variables potentially accessible across multiple threads. The
main questions are raised by a memory model nclude as
follow:
Atomicity: Which memory operations have indivisible
effects?
Visibility: Under what conditions will the effects of a write
action by one thread be seen by a read by another thread?
Ordering: Under what conditions are sequences of memory
operations by one or more threads guaranteed to be visible in
the same order by other threads?
As such, the process of defining a sound memory model for
C++ can reuse the years-long effort that was invested in
defining, peer-reviewing, refining, and debugging the
mentioned formal model. However all above questions are
related to hardware but still work is done on it.In other word
,work on progress.

IV MAPING OF MEMORY MODLE
There are various kind of memory actions. and after that next
for a language specification is to map these notions to all of
the memory-related constructions in the language. This
process entails nailing down a large set of “small issues” that
are necessary for programmers to be able to predict and
control effects. Areas that we have so far identified include:
Atomicity A given platform may guarantee atomicity only for
reads and writes of certain bit widths and alignments. The
spec must permit these to vary, and must therefore provide
some means for programs to query these properties.
Extra writes There are several cases in C++ in which
compilers and machines have historically been permitted to
issue writes that are not obvious from inspection of source
code. The most notable examples involve structures with
small fields. For example, given:
struct S { short a; char b; char c; } s;
an assignment such as s.a = 0 might be executed as if the code
were *(int*)&s = 0 if a compiler infers from context that b and
c are zero as well, as in the following example:
void Fun(S& s) {
if (s.b == 0 && s.c == 0) {
s.a = 0;
}
}

It is not expected at best in a multithreaded context in which
the other fields were also being assigned concurrently. A spec
must clearly define whether and when such compiler
transformations remain legal.
Volatile data In the current language spec, the volatile
qualifier is mainly used to indicate guaranteed order of reads
and writes within single threaded semantics—for example for
device control registers, memory mapped I/O, or opaque flow
(as in setjmp or interrupts). In a multithreaded language, it
may be useful for volatile to take on the extra burden of
constraining inter-thread visibility and ordering properties.
There are a few options for the detailed semantics. In the
simplest, volatile reads act as acquire and writes as release.
This has the virtue of being
relatively easy to use by programmers who are not intimately
familiar with memory models. For example, the infamous
“double-checked locking” idiom [3] works as expected under
these rules if references are declared as volatile (and other
lock-based rules below are followed). This has the
disadvantage of imposing “heavier” constraints on the
compiler and processor than necessary in very performance-
sensitive applications. However, optimizers can often
eliminate unnecessary operations (such as consolidating
several consecutive acquire and release operations into
one).
Opaque calls One anxiety about moving to multithreaded
specifications is that compilers may become excessively
conservative when compiling code with opaque function
calls—flushing and reloading registers and/or issuing memory
barriers in case the called function’s effects depend on this. It
may be desirable to allow programmers to control this using
some kind of qualifier. Options include those with defaults in
both directions; for illustration, assuming lack of effects
unless a function is qualified as, say, mutable; versus
assuming effects unless qualified with some extended form of
const. Alternatively, or in addition, the spec could include a
means for programmers to tell compilers that a certain
program is either definitely single-threaded or definitely
multithreaded, as a way of controlling certain
optimizations. Further exploration of options and their
consequences is needed. These considerations are very related
to an existing C++ standardization proposal [2].

V MULTITHERADING SYNCHRONIZATION AND
COORDINATION

Atomic update operations (since linked memory barrier
instructions, which impose memory ordering constraints on
the processor) form the basis for fundamentally all modern
multithreaded synchronization and coordination. While there
is some variety across architectures in the nature and style of
these instructions, there is adequate commonality in current
and medium-term-future systems to define a small set of
intrinsic that can be used for moveable concurrent
programming. There are several stylistic options here. One
approach is to define three small intrinsified inclinable
classes, one each holding a single value of type int, long, and
(templated) pointer, and supporting operations such as:
namespace std {

Shruti Sandal et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 324-328

325

class atomic_int {
public:
int get();
int set(int v);
bool compare_and_set(int expected_value, int new_value);
int weak_get();
int weak_set(int v);
bool weak_compare_and_set(int expected_value,
int new_value);
// other minor convenience functions, including:
int get_and_increment();
int get_and_add(int v);
// ...
};
}
The major magnetism of this approach is that it appears to be
implement able on essentially any platform. Even those
machines without such primitives can emulate them using
private locks. And even though some machines (such as
PowerPC) support LL/SC (load-linked, store-conditional)
instead of CAS (compare-and-set), in live out, nearly all
usages of LL/SC are to perform CAS (the reverse is
impossible), so there would rarely be incentive to resort to
non-standardized, non-portable constructions even on these
platforms. The thought of the “weak” versions is to permit
finer control of atomics and barriers than otherwise available
using volatile or other constructions. For example, a weak set
need only perform a store ordering barrier, not a full release,
which may be cheaper on some machines.

VI LIBRARIES FOR THERADING SUPPORT
A this time, multithreaded C++ programs tend to rely first and
foremost on one of a fairly small set of libraries for threading
support: POSIX threads, Win32, ACE, and Boost. These hold
many more similarities than differences. The chance arises to
provide a standard library that unadventurously abstracts over
such packages. Even if this is not done, such libraries must, to
conform to the rest of this proposal, spell out their basic
locking primitives in terms of the memory model. All basic
locks should and do make available semantics in accord with
the basic gain and release actions specified by the Standard.
Compilers in turn must respect these semantics. The
technicalities to ensure this would rely on how the opaque call
issue mentioned above is resolved. In this draft we do not
even sketch out the APIs of this library.

VII. THE C++ MODLE WITHOUT LOW LEVEL
ATOMICS

Memory operations are viewed as operating on abstract
memory locations. Each scalar value occupies a separate
memory location, except that contiguous sequences of bit-
fields inside the same innermost struct or class declaration are
viewed as a single location The remainder of the C++ standard
was modified to define a sequenced-before relation on
memory operations performed by a single thread [5]. This is
analogous to the program order relation in Java and other
work on memory models. Unlike prior work, this is only a
partial order per thread, reflecting undefined argument
evaluation order. Define a memory action to consist of:

1. The type of action; i.e., lock, unlock, atomic load, atomic
store, atomic read-modify-write, load, or store. All but the last
two are customarily referred to as synchronization operations,
since they are used to communicate between threads. The last
two are referred to as data operations.
2. A label identifying the corresponding program point.
3. The values read and written. Bit-field updates can be
modeled as a load of the sequence of contiguous bit-fields,
followed by a store to the entire sequence. Define a thread
execution to be a set of memory actions, together with a
partial order corresponding to the sequenced-before ordering.
Define a sequentially consistent execution of a program to be
aset of thread executions, together with a total order <T on all
the memory actions, which satisfies the constraints:
1. Each thread execution is internally consistent, in that it
corresponds to a correct sequential execution of that thread,
given the values read from memory, and respects the ordering
of operations implied by the sequenced-before relation.
2. T is consistent with the sequenced-before orders; i.e., if a is
sequenced before b then a <T b.
3. Each load, lock, and read-modify-write operation reads the
value from the last preceding write to the same location
according to <T . The last operation on a given lock preceding
an unlock must be a lock operation performed by the same
thread. Effectively this requires that <T is just an interleaving
of the individual thread actions. Two memory operations
conflict if they access the same memory location, and at least
one of them is a store, atomic store, or atomic read-modify-
write operation. In a sequentially consistent execution, two
memory operations from different threads form a type 1 data
race if they conflict, at least one of them is a data operation,
and they are adjacent in <T (i.e., they may be executed
concurrently). We can now specify the C++ memory model
simply as: _ If a program (on a given input) has a sequentially
consistent execution with a (type 1) data race, then its
behavior is undefined. Otherwise, the program (on the same
input) behaves according to one if its sequentially consistent
executions.

VIII SEMANTICS OF DATA RACES
it is critical to define the semantics of all programs, including
those with data races. Java must support the execution of
untrusted “sandboxed” code. Clearly such code can introduce
data races, and the language must guarantee that at least basic
security properties are not violated, even in the presence of
such races. Hence the Java memory model [9] is careful to
give reasonable semantics to programs with data races, even at
the cost of significant complexity in the specification. For
C++, there is no such issue. Initially, there was still some
concern that we should limit the allowable behavior for
programs with races. However, in the end, we decided to leave
the semantics of such programs completely undefined. In the
current working paper for the C++ standard, in spite of
discussions such as [10] there are no benign data races. The
basic arguments for undefined data race semantics in C++ are:
1. Although generally under-appreciated, it is effectively the
status quo. Pthreads states [12] “Applications shall ensure that
access to any memory location by more than one thread of

Shruti Sandal et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 324-328

326

control (threads or processes) is restricted such that no thread
of control can read or modify a memory location while
another thread of control may be modifying it.” As we
mention in the introduction, Ada earlier took the same
approach. The intent behind win32 threads appears to have
been similar.
2. Since the C++ working paper provides low-level atomics
with very weak, and hence cheaply implement able, ordering
properties, there is little to be gained by allowing races, other
than allowing code to be obfuscated. We effectively require
only that such races be annotated by the programmer. Since
the result is usually exceedingly subtle, we believe this should
be required by any reasonable coding standard in any case.
3. Giving Java-like semantics to data races may greatly
increase the cost of some C++ constructs. It would
presumably require that we not expose uninitialized virtual
function tables, even in the event of a race, since those could
otherwise result in a wild branch. This in turn often requires
fences on object construction. In Java, this is arguably less
major, since object construction is always associated with
memory allocation, which typically already carries some cost.
This does not apply to C++.
4. Current compiler optimizations often assume that objects
do not change unless there is an intervening assignment
through a potential alias. Violating such a built-in assumption
can cause very complicated effects that will be very hard to
explain to a programmer, or to delimit in the standard. We
believe this assumption is sufficiently ingrained in current
optimizers that it would be very difficult to effectively remove
it.

IX CONSULATION
In this paper ,we give the outline about the foundation of
multithreading I and data race. We try to represent the
memory model for multithreading and also map it .Data race
is debugger tool in this respect of threading . In return for
avoiding data races or, equivalently, identifying variables and
other objects involved in data races as atomic, most users can
ignore the intricacies of hardware memory models and
compiler optimizations; they are guaranteed sequentially
consistent execution. All of this can be based on the most
intuitive definition of a data race: simultaneous execution of
conflicting operations. The one place in which modern
machine architectures do unavoidably show through slightly is
that updates to adjacent bit-fields conflict; otherwise,
operations conflict only when they touch the same object
From the compiler implementors perspective, we preserve the
guarantee that ordinary variables do not appear to change
asynchronously. Hence, standard program analyses remain
valid, except for objects of atomic type, even in the presence
of threads. In return, the implementation must refrain from
introducing user visible data races, for example, as a result of
rewriting adjacent structure fields or register promotion. More
complete implementation guidelines are given in [13].

REFERENCES
[1] S. V. Adve. Designing Memory Consistency Models for Shared-Memory
Multiprocessors. PhD thesis, University of Wisconsin-Madison, 1993.
[2] Walter E. Brown et al. Toward Improved Optimization Opportunities in
C++0X. DocumentWG21/N1664 = J16/04-0104; available at http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf, Jul 2004
[3] Scott Meyers and Andrei Alexander’s. C++ and The Perils of Double-
Checked Locking. Doctor Dobb’s Journal, Jul 2004.

[4] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency memory
model. In Proc. Conf. on Programming Language Design and
Implementation, pages 68–78, 2008.
[5] C++ Standards Committee, Pete Becker, ed. Working Draft, Standard for
Programming Language C++. C++ standards committee paper
WG21/N2461=J16/07-0331, http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2007/n2461.pdf, October 2007.
[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and transaction-
aware java runtime. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, pages 245–255,
2007.
[7] C. Flanagan and S. Freund. Atomizer: A dynamic atomicity checker for
multithreaded programs. Science of Computer Programming, 71:89–109,
2008.
[8] C. Flanagan and S. Freund. FastTrack: Efficient and precise dynamic
race detection. In Proceedings of the ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation, 2009.
[9] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Proc.
Symp. on Principles of Programming Languages, 2005.
[10] S. Narayanasamy et al. Automatically classifying benign and harmful
data races using replay analysis. In Proc. Conf. on Programming Language
Design and Implementation, pages 22–31, 2007.
[11] ISO/IEC JTC1/SC22/WG21. ISO/IEC 14882, programming language -
C++ (committee draft). http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2008/n2800.pdf, 2008.
[12] IEEE and The Open Group. IEEE Standard 1003.1-2001. IEEE, 2001.
[13] H.-J. Boehm. N2338: Concurrency memory model compiler
consequences. C++ standards committee paper WG21/N2338=J16/07-198,
http://www.open-std.org/JTC1/SC22/WG21/ docs/papers/ 2007/n2338.htm,
August 2007.
[14] C. Nelson and H.-J. Boehm. Concurrency memory model (final revision).
C++ standards committee paper WG21/N2429=J16/07- 0299,
http://www.open-std.org/JTC1/SC22/WG21/docs/ papers/2007/n2429.htm,
October 2007.
[15] C. Nelson, H.-J. Boehm, and L. Crowl. Parallel memory sequencing
model proposal. C standards committee paper WG14/N1349, http:
//www.open- std.org/JTC1/sc22/wg14/www/docs/n1349. htm, February 2009.
[16] IEEE and The Open Group. IEEE Standard 1003.1-2001. IEEE, 2001.
 [17] United States Department of Defense. Reference Manual for the Ada
Programming Language: ANSI/MIL-STD-1815A-1983 Standard 1003.1-
2001, 1983. Springer
[18] Tim Lindholm et al. Java Specification Request 133: Memory Model and
Thread Specification Revision. Available at http://www.jcp.org/jsr/
detail/133.jsp.
[19] S. V. Adve. Designing Memory Consistency Models for Shared- Memory
Multiprocessors. PhD thesis, University of Wisconsin-Madison, 1993.
[20] D. Aspinall and J. Sevcik. Java memory model examples: Good, bad,
and ugly. VAMP07 Proceedings http://www.cs.ru.nl/ ~chaack/VAMP07/,
2007.
[21] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. Adve, S. Heumann, R.
Komuravelli, J. Overby, P. Simmons, H. Sung, and M. Vakilian. A type and
effect system for deterministic parallel java. Technical Report UIUCDCS-R-
2009-3032, UIUC, 2009.
[22] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency memory
model. In Proc. Conf. on Programming Language Design and
Implementation, pages 68–78, 2008.
[23] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A case for system support
for concurrency exceptions. In HotPar, 2009.
[24] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and transaction-
aware java runtime. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, pages 245–255,
2007.

Shruti Sandal et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 324-328

327

[25] C. Flanagan and S. Freund. Atomizer: A dynamic atomicity checker for
multithreaded programs. Science of Computer Programming, 71:89–109,
2008.
[26] C. Flanagan and S. Freund. FastTrack: Efficient and precise dynamic
race detection. In Proceedings of the ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation, 2009.
[27] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification, 3rd edition. Addison Wesley, 2005. [28] IEEE and The Open
Group. IEEE Standard 1003.1-2001. IEEE, 2001.
[29] ISO/IEC JTC1/SC22/WG21. ISO/IEC 14882, programming language -
C++ (committee draft). http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2008/n2800.pdf, 2008.
[30] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, C-
28(9):690–691, 1979.

[31] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Proc.
Symp. on Principles of Programming Languages, 2005
[32] C. Nelson and H.-J. Boehm. Concurrency memory model (final revision).
C++ standards committee paper WG21/N2429=J16/07-
0299, http://www.open-std.org/JTC1/SC22/WG21/docs/
papers/2007/n2429.htm, October 2007.
[33] C. Nelson, H.-J. Boehm, and L. Crowl. Parallel memory sequencing
model proposal. C standards committee paper WG14/N1349, http:
//www.open-std.org/JTC1/sc22/wg14/www/docs/n1349. htm, February 2009.
[34] V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of
memory models. In PPoPP 07, March 2007.
[35] United States Department of Defense. Reference Manual for the Ada
Programming Language: ANSI/MIL-STD-1815A-1983 Standard 1003.1-
2001, 1983. Springer.2

Shruti Sandal et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 324-328

328

