

Abstract

Mobile Ad Hoc Networks (MANETs) provide an attractive solution for networking in the situations where network infrastructure or
service subscription is not available. Cooperative caching scheme can improve the accessibility of data objects. In this paper, we proposed
a neighbor group data caching scheme called Neighbor Group Data Caching (NGDC) for improving data access efficiency in MANETs.
The objective is to improve data availability and access efficiency by collaborating local resources of mobile nodes. cache resolution and
cache management are the two problems of cooperative caching. To improve data availability and access efficiency, cooperative caching
discovers data sources which induce less communication cost by utilizing neighbor group nodes. For cache management, cooperative
caching increases the effective capacity of cooperative caches by minimizing caching duplications within the cooperation zone and
accommodating more data varieties.We evaluate the performance of the Neighbor Group Data Caching by using NS2 and compare it with
the existing schemes such as Neighbor caching and ZoneCooperative. The experimental results show that the cache hit ratio is increased
by about 4%~40% and the average latency is reduced by about 5%~37% compared with other schemes.

Keywords:

 Ad hoc, Cache placement, Cooperative caching, Cache Consistency, Cache Management

1. INTRODUCTION

A Mobile Ad hoc Network (MANET) is a collection
of wireless mobile nodes forming a temporary network
without the need for base stations or any other preexisting
network infrastructure. In a peer-to-peer fashion, mobile
nodes can communicate with each other by using wireless
multihop communication. Due to its low cost, high
flexibility, fast network establishment and self-
reconfiguration, ad hoc networking has received much
interest during the last ten years. However, without a fixed
infrastructure, frequent path changes cause significant
numbers of routing packets to discover new paths, leading
to increased transmission latency over fixed networks.
Each MANET node can serve as a router, and may move
arbitrary and dynamically connected to form network
depending on their positions and transmission range. The
topology of the ad hoc network depends on the
transmission power of the nodes and the location of the
MNs, which may change with time. Caching techniques

are an efficient solution for increasing the performance in
message or data communication. The original idea of
caching is that the data accessed by MHs has the
properties of temporal and spatial locality. Higher
temporal and spatial locality ensures that most accesses
will go to the data that were accessed recently in the past
and that reside in the cache. Therefore, caching frequently
requested data can improve the performance of data
communication. Data caching and prefetching techniques
used in traditional wireless networks can be extended to be
used in MANETs. In this paper , we investigate the use of
caching and prefetching techniques for improving data
accessibility and reducing latency in MANET
environments. As mobile clients in ad hoc networks may
have similar tasks and share common interest, cooperative
caching, which allows the sharing and coordination of
cached data among multiple clients, can be used to reduce
the bandwidth and power consumption. Caching has been
widely used in wired networks, such as the Internet, to
increase the performance of web services [1-4] However,

Caching Technique for Improving Data
Retrieval Performance in Mobile Ad Hoc

Networks

Mrs. K.Shanmugavadivu 1 and Dr M.Madheswaran2

¹ Professor / Department of MCA/ K.S.Rangasamy College of Technology / Tiruchengode -637215
mahesh_ksv@rediffmail.com

2 Principal, Muthayammal Engineering College, Rasipuram.

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

249

the existing cooperative caching schemes cannot be
implemented directly in MANETs due to the host mobility
and resource constraints that characterize these networks.
As a result, new approaches have been proposed to tackle
these challenges[5-10]. These approaches have been
introduced to increase data accessibility and reduce query
delay in MANETs. In [5], a cooperative cache-based data
access scheme is proposed for ad hoc networks. The
schemes presented in [9-10] are based on a specific
routing protocol. The scheme in [9] used popularity,
access cost, and coherency as criteria to replace cached
data item when a mobile host’s cache space is full. In
[10], a transparent cache-based mechanism based on a
new on-demand routing protocol called Dynamic Backup
Routes Routing Protocol is proposed. The routing protocol
and the cache mechanism allow the caching of data. This
scheme allowed the cached data to be moved to a backup
host in response to a link failure in order to guarantee data
access. In [8], the implementation of an architecture
similar to cooperative caching which defines two
protocols to share and disseminate data among mobile
hosts was proposed. However, the scheme focused on data
dissemination in a single-hop rather than cooperative
caching in a multi-hop environment. Another study
utilized a novel architecture for database caching based on
the separation of queries and responses [11]. The
experimental results indicated that the scheme improved
data accessibility by reducing response time in the
presence of host mobility. Cooperative caching is an
effective mechanism for increasing data accessibility in
both wired and wireless networks. However, caching
alone is not sufficient to guarantee high data accessibility
and low communication latency in dynamic systems and
with limited network resources. In this paper we propose
an neighbor group data caching mechanism for MANETs.
This paper provides the following contributions. First, we
use a clustering architecture that allows localized and
adaptive data caching and prefetching mechanism to
increase data accessibility and reduce latency in the
presence of host mobility. Second, we use a cache
replacement policy to the cached data. Thus, eviction of
data in the cache depends on a time to live parameter.
Third, the proposed caching and prefetching architecture
is flexible and does not rely on any specific routing
protocol. The remainder of this article is organized as
follows. Section 2 reviews the related works for
cooperative caching schemes in mobile ad hoc networks.
The proposed system architecture and the cooperative

caching and prefetching strategies in presented in section
3. Section 4 presents the cache replacement policy and
data consistency management. Section 5 presents the
results of performance evaluation based on simulation
experiments. Finally, Section 6 presents conclusions and
future research work.

II. RELATED WORKS

A. CacheData and CachePath

In CacheData, the intermediate hosts, which are
located along the path between the source host and the
destination host, cache frequently accessed data items. In
CacheData, the router node caches the data instead of the
path when it finds that the data is frequently accessed.
CacheData enforces another rule: A node does not cache
the data if all requests for the data are from the same node.
The CacheData approach needs extra space to save the
data, it should be used prudently. In CachePath, the
intermediate hosts record the routing path information of
passing data. CachePath only records the data path when it
is closer to the caching host than the data source. To
handle cache consistency, CachePath and CacheData use a
simple weak consistency model based on the time-to-live
mechanism. In this model, a routing node considers a
cached copy up-to-date if its TTL hasn’t expired. If the
TTL has expired, the node removes the map from its
routing table (or removes the cached data). As a result, the
routing node forwards future requests for this data to the
data source. We optimize this model by allowing nodes to
refresh a cached data item if a fresh copy of the same data
passes by. If the fresh copy contains the same data but a
newer TTL, the node updates only the cached data’s TTL
field. If the data center has updated the data item, the node
replaces both the cached data item and its TTL with the
fresh copy.

B. ZoneCooperative

The ZoneCooperative [11] scheme considers the
progress of data discovery. In ZC, each client has a cache
to store the frequently accessed data items. The data items
in the cache satisfy not only the client’s own requests but
also the data requests passing through it from other clients.
For a data miss in the local cache, the client first searches
the data in its zone before forwarding the request to the
next client that lies on a path towards server. Zone

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

250

cooperative (ZC) caching scheme for data retrieval in
mobile ad hoc networks. The ZC caching uses a simple
weak consistency model based on the time-to-live (TTL),
in which a client considers a cached copy up-to-date if its
TTL has not expired. The client removes the cached data
when the TTL expires. A client refreshes a cached data
item and its TTL if a fresh copy of the same data passes
by. However, the latency may become longer if the
neighbors of intermediate nodes do not have a copy of the
requested data object for the request.

C. GroupCaching

Group Caching (GC) allows each MH and its 1-hop
neighbors form a group. The caching status is exchanged
and maintained periodically in a group.In Group Caching,
the caching space in MHs can be efficiently utilized and
thus the redundancy of cached data is decreased and the
average access latency is reduced. Although cooperative
caching can provide the high accessability of data objects,
the caching performance (cache hit ratio and average
latency) can be reduced significantly due to the property
of dynamic topology in MANETs. The group can store
more data objects from the destinations than an MH
because the group members are cooperative to cache the
data objects.

III. PROPOSED NEIGHBOR GROUP DATA CACHING
SCHEME

A. Network Model

The network consists of mobile hosts that form group.
The network connectivity is maintained using a periodic
Hello message that is exchanged among one-hop
neighbors. other. The set of one hop neighbors of a client
MHi is denoted by MH1 The combination of clients and
transitive closure of their one hop neighbors forms a
mobile ad hoc network. As clients can physically move,
there is no guarantee that a neighbor at time t will remain
in the cluster at later time t +τ . The devices might be
turned off or on at any time, so the set of live clients varies
with time and has no fixed size.

B System Environment

The system environment is assumed to be an ad hoc
network where MH access data items held as originals by

Fig. 1 Select a Node MH for Data Storage

 Fig. 2 Movement of Data between neighbor node

other MHs. A MH that holds the original value of a data
item is called data source/server/center. A data request
initiated by a host is forwarded hop-by-hop along the
routing path until it reaches the data source and then the
data source sends back the requested data. Each MH
maintains local cache in its hard disk. To reduce the
bandwidth consumption and query latency, the number of
hops between the data source/cache and the requester
should be as small as possible. Most MHs, however, do
not have sufficient cache storage and hence the caching
strategy is to be devised efficiently. In this system
environment, we also make the following assumptions:

– Unique identifier is assigned to each host in the system.
The system has total of M hosts and MHi (1 ≤ i ≤ M) is a
host identifier. Each host moves freely.
– The network is divided into several one hop non-
overlapping groups where in each group
a node could be in one of two roles: MHi or ordinary
node. MHi is a node that maintains information of
different ordinary nodes in its group.

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

251

– We assign a unique data identifier to each data item
located in the system. The set of all data items is denoted
by D = {d1, d2, . . . , dN }, where N is the total number of
data items and dj (1 ≤ j ≤ N) is a data identifier. Di denotes
the actual data of the item with id di . Size of data item di
is si (in bytes).
– Each MH has a cache space of C bytes.
– Each data item is periodically updated at data source.
After a data item is updated, its cached copy (maintained
on one or more hosts) may become invalid.

 1) Caching Control Message :

In this caching scheme, design a caching control
message to exchange the caching status in a group
periodically. In experimental, every MHs exchange
interval at every second. The caching control message
contains the fields: { Cached data id, Timestamp,
Remaining available cache space}. The caching control
message is periodically sent by MHs. Each MH can
maintain localized caching statues of one-hop neighbors
for performing cache placement and replacement. Figure 1
illustrates the group in the view of MH D.

IV. CACHE REPLACEMENT POLICY AND DATA
CONSISTENCY MANAGEMENT

In NGDC scheme, it proposes how and where to place the
data object in a group member when an MH receives a
data object from the destination. Based on the usage of
caching control message, each MH knows the remaining
available cache space of other MHs in a group and the IDs
and timestamps of their cached data objects. First of all,
when an MH receives a data object (called receiving MH),
it caches the data object if the cache space is enough.
Otherwise, the receiving MH checks the available cache
spaces of its group members. If the available cache space
of any group member is sufficient to store the data object,
the receiving MH puts the data object to the group
member randomly. Second, if the available cache space of
every group member is not sufficient to cache the received
object, the receiving MH lookups the group_table to see if
there exists a group member that already caches the data
object. If yes, the data object is not cached. If no, the
receiving MH selects next neighbor MHs. The receiving
MH checks the available cache spaces of next 1-hop
neighbor members. If the available cache space of any
next 1-hop neighbor member is sufficient to store the data
object, the receiving MH puts the data object to the next 1-
hop neighbor

TABLE I

THE SIMULATED PAREMETERS

Simulator Network Simulator(NS2)[9]
Simulation time 6000 Seconds
Network size 1500m x 500m
Transmission range of MH 100m
Mobility model Random waypoint
Speed of mobile host 1~10m/s randomly
Total of data item set 1000 data item
Average Query Rate 0.2 /Second
Hot data 20% of total data item set
Probability of query in hot
data

80%

DataSize 10kBytes
Cache size 200kBytes, 400kBytes,

600kBytes,800kBytes,
1000kBytes,1200kBytes,
1400kBytes,

Compared Schemes Cache Data[1], Zone
Cooperative[2], Proposed
Group Caching

Replacement policy LRU

The process of data discovery performs the searches in the
caching nodes for the requested object. In Neighbor Group
Caching, when a requester (source) wants to retrieve a
data object from the data source, it first checks its MHs to
see if the data object exists locally. If yes, it returns the
data object (cache hit) to the application. If no, it lookups
its group_table for the data object, if yes, the requester
redirects the data request to group member, and waits the
replied data object (remote cache hit). If the requester can
not find any cached record for the desired data object in
the MHs and its one hop neighbor, it starts to execute the
data discovery process in the next neighbor group
member. Again if the requester can not find any cached
record for the desired data object in the MHs and its one
hop neighbor and its one hop neighbor, it starts to execute
the data discovery process. Initially, the requester
constructs a routing path to the destination and sends the
data request to the next neighbor MH in order to reach the
data source (destination). When the intermediate nodes
receive a data request in the routing path, they lookup their
self_table and group_table and its one hop neighbor of
group member for the data request. The process of lookup
first searches self_table and then searches the group_table
and its neighbor group member. If the receiving MH can
not find the record the request in its selft_table and
group_table and its one neighbor group member, it
forwards the request to the next MH on the routing path. If
the destination (data source) receives the data request, it
replies the data object via the routing path. When the

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

252

intermediate node receives the pass-by data object, it
performs the cache placement and replacement according
to their self_table and group table. There are two schemes
that can deal with the cache consistency problem: weak
consistency and strong consistency. Under the weak
consistency, a cached data object is associated with an
attribute, TimeToLive (TTL). If the TTL time expires, the
cached data object is removed. Under the strong
consistency, if a cached data object is requested, the
caching node first asks the data source to see if the cached
data object is valid or not. Because of the energy concern
and the constrain of wireless bandwidth, we prefer using
the weak consistency in mobile ad hoc networks.

V. PERFORMANCE EVALUATION

The performance evaluation is shown in this section.
The simulation model is given in Section 5.1. In
SimpleCaching, only requester caches the replied data
object for itself. All schemes use LRU as the cache
replacement policy. The performance metrics is
introduced in Section 4.3. Section 4.4 shows the results in
performance evaluation.

A. The Simulation Model

The simulation is performed on NS2 with the CMU
wireless extension. In our simulation, the AODV routing
protocol [14] was tested as the underlying ad hoc routing
algorithm. The simulation time is set 6000 seconds. The
number of mobile hosts is set to 100 in a fixed area. We
assume that the wireless bandwidth is 2MB/s and the radio
range is 100m. There are totally 1000 data items
distributed uniformly among all MHs. The number of hot
data objects is set to 200 and all hot data objects are
distributed uniformly among all MHs. The probability of
queries for the hot data is set to 80%. The query rate of
MHs is set to 0.2/second. In order to simulate the node
join and leave operations, we set a join/leave rate. If the
value of join/leave rate is 20, there will be ten MHs
randomly joining and leaving the network every 20
seconds. If an MH joins or leaves the network, its content
of cache will be cleared.We model the movement of nodes
in a 1500m x 500m rectangle area. The moving pattern
follows the random way point mobility model [15].
Initially, nodes are placed randomly in the area. Each node
selects a random destination and moves toward the
destination. After the node reaches its destination, it
pauses for a random period of time and repeats this

movement pattern. The detail of other simulation
parameters is shown in Table 1.

B Performance Metrics

The Performance metrics are average hop count, cache hit
ratio(include remote cache hit ratio in remote caching
node), and average latency of data objects.

 1) Average hop count :

The number of hop counts between the source and the
destination or caching nodes.

 2) Cache hit ratio:

T he combined cache hit ratio in the requester and its
groupthe group members

 3) Average latency:

The time interval between the time of generating a
query in the requester and the time of receiving
requested data object from the data source.

C. Simulation Results

 1) Average hop count : We first measure the hop counts
in all schemes. Table 2 shows the average hop count
between the source and the destination when a requester
wants to retrieve a data object. The destination can be the
data source or intermediate caching nodes The simulation
is run under different cache sizes and different join/leave
rates. In all schemes when the cache size is large, the
average hop count is reduced. In Neighbor Group Data
Caching, the average hop count is the lowest because the
Neighbor Group Data Caching improves the cache hit
ratio and then reduce the average hop count.

Fig. 3 Effect of delivery ratio on different node leave/Join rate

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

253

 2) Cache Hit Ratio :

Figure 4 and figure 5 shows the cache hit ratios of
MHs under different cache sizes and join/leave rates. The

 Fig. 4 Cache hit ratio under different node cache size

Fig. 5 Cache hit ratio under different node leave/join rate

measured cache hit ratio includes the cache hit (local
cache hit) in the requester and cache hit in the other MHs
(remote cache hit) except the data source. The cache size
is set to 200KB, 400KB, 600KB, 800KB, 1000KB,
1200KB and 1400KB. The size of a data item is set to
10KB. The pair of source and destination nodes is
randomly selected in the simulation. In general, the cache
hit ratio increases while the cache size increases. Figure 2
shows the In Neighbor Group Data Caching has a higher
cache hit ratio than others because both the MH and its
group members can store data objects. These cached data
objects Improve the cache hit ratio. Figure 3 shows the
experimental results under the dynamic topology. In every
20, 40, 60, 80, 100, and 120 seconds, ten MHs are selected
randomly for joining and leaving the network. When an
MH leaves the network, it removes all cached data objects.
When the MH joins the network, the content of its cache is
set to empty. In Neighbor Group Data Caching shows the

highest cache hit ratio because it utilizes all the available
cache space of neighbors (group members). When an
MH joins the network, its available cache space can be
utilized by other MHs. Therefore, In Neighbor Group Data
Caching, the cache hit ratio is higher than other schemes.
In ZoneCooperative and Neighbor Cache schemes, there is
no cooperative caching protocol among MHs. So the MH
can not efficiently integrate their neighbor’s cache space.

 3) Average Latency :

Figure 6 and figure 7 shows the average latency under
different cache sizes and different join/leave rates. We

Fig. 6 Effect of average query latency on number of nodes

know that ZoneCooperative scheme has no
cooperative protocol among the MHs. Therefore,
when an MH receives a data request, it needs to send
a request to its zone and waits for the response. As a
result, it leads to the long latency if there is no cache
record in a zone along the routing path. In
GroupCaching, the MH and its one-hop neighbors
form a group. If a data request is received, the MH
can check its self_table and group_table immediately.
No communication with its neighbors is needed to
know the caching status in other group members.

Fig. 7 Effect of average query latency on different node leave/Join rate

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

254

As a result, the average latency is reduced. Also, due
to the placement and replacement algorithms executed in
a group, all the MHs in a group member can cache more
data objects and then reduce the redundancy of the cached
data. Therefore, the average latency is reduced compared
with other schemes.

VI. CONCLUSION

In this paper, we propose a Neighbor Group caching
scheme (NGDC) for mobile ad hoc networks. MHs
maintain the localized caching status among the group
members. Therefore, the MHs can cooperative to store
different data objects. Furthermore, if an MH has available
cache space, it can be utilized by its neighbors as soon as
it joins a group. It improves the cache hit ratio and reduces
the average latency compared with existing schemes. In
the future work, we will investigate the integration of
broadcasting and cooperative caching.

REFERENCES
[1] V. Alex, “A good file system,” in Proc of USENIX File System Workshop,
pp.1—12, May, 1992.
[2] A. Rousskov and D. Wessels, “Cache digests,” Computer Networks and
ISDN Systems, vol.30, 1999, pp.2155-2168.
[3] J. Wang, “A survey of web caching schemes for the Internet,” ACM
SIGCOMM, Computer Communication Review, pp.36—46.
[4] D. Wessels and K. Claffy, “ICP and the squid web cache,” IEEE, vol. 16,
Jan. 1998, pp.345-357.
[5] G. Cao, L. Yin and C.R. Das, “Cooperative cache-based data access in ad
hoc networks,” IEEE Computer Society, vol. 37, 2004, pp.32-39.
[6] T. Hara, “Replica allocation in ad hoc networks with periodic data update,”
in Proc. Int. Conf. on Mobile Data Management (MDM’02), Jan., 2002, pp.79-
86.

[7] S. Lim, “A novel caching scheme for internet based mobile ad hoc
networks,” IEEE, Oct. 2003, pp.38-43.
[8] M. Papadopoui and H. Schulzrinne, “Effects of power conservation, wireless
coverage and cooperation on data dissemination among mobile devices,” in
Proc. MobiHoc, ACM Press, pp.117—127, 2001.
[9] F. Sailhan and V. Issarny, “Cooperative caching in ad hoc networks,” Proc.
of the 4th Int. Conf. on Mobile Data Management. 2003, pp.13-28.
[10] Y-H. Wang, J. Chen, C-F. Chao and C-M. Lee “A transparent cachebased
mechanism for mobile ad hoc networks,” Proc. Of the Third Int. Conf. on Inform
Tech and Applications (ICITA’05), vol.2, Jan. 2005, pp.305-310.
[11] H. Artail, H. Safa and S. Pierre, “Database Caching in MANETs Based on
Separation of Queries and Responses,” in Proc. IEEE Int. Conf. on Wireless and
Mobile Computing, Networking and Communications (WiMob 2005), Montréal,
Canada.
[12] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc
Networks,” IEEE INFOCOM, pp. 2537-2547, March 2004.
[13] G. Cao, L. Yin and C. Das, “Cooperative Cache Based Data Access
Framework for Ad Hoc Networks,” IEEE Computer, pp. 32-39, February 2004.
[14] Takahiro Hara, “Replica Allocation Methods in Ad Hoc Networks with
Data Update,” Kluwer Journal of Mobile Networks and Applications,8(4), pp.
343-354, 2003.
[15] Chand, N. Joshi, R. C., and Misra, M., "Efficient Cooperative
Caching in Ad Hoc Networks Communication System Software and
Middleware," 2006. Comsware 2006. First International Conference on 08-
12 Jan. 2006 Page(s):1 - 8

Authors

Shanmugavadivu. K received the B.ScDegree
from Bharathiar university and MCA Degrees
from Bharathidasan University and M.Phil (C.S) ,
M.Phil (C.S), Manonmaniam Sundaranar
University. She is working as a Professor in
Department of MCA at K.S.R College of
Technology, Tiruchengode. Her area of interest
Computer Networks, Network Protocols, Mobile Ad hoc
Networks, Software Engineering. She is a member of ISTE.

M.Madheswaran received the BE Degree from
Madurai Kamaraj University in 1990, ME
Degree from Birla Institute of Technology, Mesra,
Ranchi, India in 1992, both in Electronics and
Communication Engineering. He obtained his
PhD degreee in Electronics Engineering from the
Institute of Technology, Banaras Hindu
University, Varanasi, India, in 1999. At present he is a
Principal of Muthayammal Engineering College,
Rasipuram, India. He has authored over forty five
research publications in international and national journals
and conferences. His areas of interest are theoretical
modeling and simulation of high-speed semiconductor devices
for integrated optoelectronics application, Bio-optics and
Bio-signal Processing. He was awarded the Young Scientist
Fellowship (YSF) by the State Council for Science and
Technology, TamilNadu, in 1994 and Senior Research
Fellowship (SRF) by the Council of Scientific and Industrial
Research (CSIR), Government of India in 1996. Also he has
received YSF from SERC, Department of Science and
Technology, Govt. of India. He is named in Marquis Who’s
Who in Science and engineering in the year 2006. He is a life
member of IETE, ISTE and IE (India) and also a senior
member of IEEE.

Shanmugavadivu et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 249-255

255

