

Securing Mobile Agent Using Dummy and Monitoring Mobile Agents

Neelesh Kumar Panthi, Ilyas Khan, Vijay k. Chaudhari

Department of Information Technology, T.I.T. Bhopal,India

nee_panthi@yahoo.co.in

mikbpl_2003@yahoco.co.in

vijay_ashish@yahoo.com

Abstract
Mobile agent is a very important concept for distributed
computing & utilizing the resources available on the connected
network because of their capability of operation on different
environments that is why the approach is used for many network
based applications like data crawling, information exchange,
distributed system integrity etc. but it lacks the security aspects
when applied to open network where nodes cannot be classified
as they are malicious or not, hence for the cases where the
security of data or reliability of agent became must we need
some method to insure the things discussed above. Although
many other methods are proposed by many authors but some
of them required a pre survey [1], encryption of important data
[2] acknowledgement schemes [3], here we are proposing a
scheme which not only confirms the security of data but also
guarantees the uninterrupted operation of agent by utilizing a
dummy agent and composite acknowledgement technique.

Keywords— Mobile agent, security, distributed computing.

I. INTRODUCTION

Mobile agents are mobile autonomous processes operate on
behalf of users in a distributed computing environment. The
autonomous agent concept has been proposed for a variety of
applications on large, heterogeneous, distributed systems (e.g.,
the Internet) [4]. These applications include a specialized
search of a middleware services such as an active mail system,
large free-text database [5], electronic malls for shopping, and
updated networking devices. Mobile agent systems have many
advantages over traditional distributed computing
environments. They use less network bandwidth, increase
asynchrony among clients and servers, dynamically update
server interfaces and introduce concurrency [6].

 Due to the problems with security of Mobile agents have
limited their popularity. Mobile agents are composed of code,
data, and state. Agents migrate from one host to another
taking the code, data and state with them. The state
information allows the agent to continue its execution from
the point where it left in the previous host. For example, a
mobile agent could be migrated from the home platform with
the task of buying an airplane ticket for its owner. The agent
would visit all the known hosts of airline companies, one after
another, to search for the most reasonably priced ticket, and
then purchase one for its owner. Each time the agent moves to

the next host, it summarizes the current state, execution
pointer on the current state, etc., so that it can start searching
for reasonable tickets on the next host. The state of the agent
will contain a set of possible tickets to be considered for
purchase. When the agent has finished its search, it may return
to the host where it found the cheapest or best ticket and
purchase it.

 While agents roam around the Internet, they are exposed to
many threats and may also be a source of threat to others.
Sander and Tschudin present two types of security problems
that must be solved [7]. The first is host protection against
malicious agents. The second is agent protection against
malicious hosts. Many techniques have been developed for the
first kind of problem, such as password protections, access
control, and sand boxes, but the second problem seems to be
difficult to solve. It is generally believed that the execution
environment (host) has full control over executing programs;
thus, protecting a mobile agent from malicious hosts is
difficult to achieve unless some tamper-proof hardware is
used. For example, Yee proposed an approach in which a
secure coprocessor is used that executes critical computations
and stores critical information in secure registers [8].

 In this paper, we propose a security approach to protect
mobile agents from malicious hosts. In this paper, to protect
the agent data and agent itself we are proposing a method
which not only protects the data but also agent. The proposed
algorithm did not required previous travelling path of node
and even the encryption is not required. Here we create agent
with dummy data and service monitoring agent which
generates the acknowledgment for host which is malicious or
not.

The paper is structured as follows. In Section II we provide
an overview of some previous works. In Section III we present
our Algorithms starting with the underlying assumptions.
Section IV shows the simulation results. In section V we
briefly give conclusion for our approach.

II. PREVIOUS WORK

Mobile agent protection is difficult because of a host’s
complete control over executing programs. While many
approaches have been proposed to defend mobile agents from
malicious hosts, none adequately addresses every aspect of
security. We survey three proposed approaches for the

Neelesh kumar Panthi et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 208-211

208

problem of mobile agent protection. The three approaches are
chosen because each approach is very uniquely implemented
and has strengths that other approaches do not have; we
choose Partial result authentication code approach because it
can protect results from mobile agents. Computing with
encrypted functions approaches is chosen because it tries to
scramble code and data together. An obfuscated code
approach is chosen because it scrambles an agent’s code in
such a way that no one is able to gain a complete
understanding of its function.

A. Partial Result Authentication Codes (PRAC)

Yee [9] introduced Partial Result authentication Codes

(PRACs). The idea is to protect the authenticity of an
intermediate agent state or partial result that results from
running on a server. PRACs can be generated using
symmetric cryptographic algorithms. The numbers of
encryption keys are used by agent. The agent’s state or some
other result is processed using one of the keys, producing a
MAC (message authentication code) on the message when the
agent migrates from a host. The key that has been used is then
disposed of before the agent migrates. The PRAC can be
verified at a later point to identify certain types of tampering.
A similar functionality can be achieved using asymmetric
cryptography by letting the host produce a signature on the
information instead.

B. Computing with encrypted functions

This scheme is proposed by Sander and Tschudin [10]

where an agent platform can execute a program embodying an
enciphered function without being able to recognize the
original function. For example, instead of equipping an agent
with function f, the agent owner can give the agent a program
P(E(f)) which implements E(f), an encrypted version of f. The
agent can then execute P(E(f)) on x, yielding an encrypted
version of f(x). With this approach an agent’s execution would
be kept secret from the executing host as would any
information carried by the agent. For example the means to
produce a digital signature could thereby be given to an agent
without revealing the private key. However, a malicious
platform could still use the agent to produce a signature on
arbitrary data. Sander and Tschudin therefore suggest
combining the method with undetachable signatures. Although
the idea is straightforward, the trick is to find appropriate
encryption schemes that can transform functions as intended.

C. Obfuscated code

 Hohl proposes what he refers to as Blackbox security to
scramble an agent’s code [11] in such a way that no one is
able to gain a complete understanding of its function.
However, no general algorithm or approach exists for
providing Blackbox security. A time-limited variant of
Blackbox protection is proposed as a reasonable alternative.
This could be applicable where an agent only needs to be
protected for a short period. One serious drawback of this

scheme is the difficulty of quantifying the protection time
provided by the obfuscation algorithm.

III. PROPOSED ALGORITHM

Mobile agent is software written in platform independent
language or package. Because of self mobility of software
through which it can transfer to itself from one to another
system connected in network. During this operation it can
exchange the required data from each system as per
requirement or according to script.

Because of mobility of agent it is very helpful for utilizing
the network resources.

But the problem with this type of system is security of the
agent, because it holds the important data and when it
executes on some platform the platform takes on the complete
control of it, and hence retrieves the complete data or can
temper the agent

Hence to protect the agent data and agent itself we are
proposing a method which not only protects the data but also
agent. The proposed algorithm did not required previous
travelling path of node and even the encryption is not required.

We can explain our algorithm in following steps-

Step 1: The agent creates a duplicate agent with same

script but with dummy dataset it also creates a services
monitoring agent which can generate the acknowledgment.

Step 2: Agent transfers the dummy agent to next node with

monitoring agent now the monitoring agent start monitoring
the services of system if it defects that some critical services
has started which can be used to temper the agent or data it
generates an alert acknowledgment to main gent waiting in
previous node.

And if in case the monitoring agent gets tempered then it
will not be able to send the acknowledgment in this case after
some time the main agent decides to repeat the complete
process again or escape the node.

Step 3: If every thing goes ok then monitoring agent will

send an ok acknowledgment to main agent which confirms the
security of agent to same this node. The confirmation
acknowledgment can be dynamically created to confirm the
authentification of acknowledgment.

A. Simulation Consideration

 We have simulated the above discussed algorithm in

OPNET modular 14 for calculation the overheads and
execution efficiency, during the simulation we have taken the
following considerations:

1. Each agent is formed as packet so we have four types of
packets.

1. main_agent

2. dummy_agent

3. Monitoring_Agent

Neelesh kumar Panthi et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 208-211

209

4. ack _packet

And the fields of the packets are shown in Figure 1.
2. The services of system are a randomly assigned variable

on which some numbers are considered as critical services.
3. The work of each agent is performed in node by some

parts of their process model as the considered a part of agent.

Figure 1: Fields of Packets

4. Tempering of data done on random basis by setting some
flag in monitoring agent process model.

5. The topology of network considered as star.
6. For this simulation we did not limit the bandwidth of

channel.

IV. THE PROGRAM SIMULATION SHOWS THE FOLLOWING

RESULTS

Result shown in Figure 2 shows the protection against
malicious node (system protects the agent to travel through
malicious node).

A. Simulation Result for Suspicious Nodes

Figure 2: Simulation result for 12 nodes where 1 node is suspicious (total

simulation time 300 seconds).

Conclusion is drawn on the basis that it sends total 10
monitoring & dummy agents and receives 10
acknowledgements but we have corrupted one node (to
consider as it started some suspicious services) hence
monitoring sends acknowledgement as suspicious node, when
receiving node detects this type of acknowledgement it does
not sends the original agent on this node and continues with
next node hence number of original agents plus dummy agents
reduces to 19 instead of 20.

Figure 3: Simulation result for 12 nodes where 2 nodes are suspicious

(total simulation time 300 seconds).

In Figure 3 the simulation shows 2 suspicious nodes
are created and we get 18 agents count instead of 20 this
verify the conclusion drawn according to first simulation
results.

B. Simulation Result for Faulty Nodes

Figure 4: Simulation result for 12 nodes where 1 node is faulty (total

simulation time 6.5 minutes).

Neelesh kumar Panthi et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 208-211

210

Result shows the protection against faulty node
(system protects the agent to collapse through faulty node or
hanging in faulty node) shown in Figure 4.

Conclusion is drawn on the basis that it sends total 10
monitoring & dummy agents and receives 9
acknowledgements but we have corrupted one node (to
consider as it grasp agent & monitoring agent) hence
monitoring sends no acknowledgement, when receiving node
did not detects acknowledgement for a certain time duration, it
does not sends the original agent on this node & continues
with next node hence number of original agents plus dummy
agents reduces to 19 instead of 20.

Figure 5: Simulation result for 12 nodes where 2 nodes are faulty

(total simulation time 6.5 minutes).

In Figure 5 the simulation shows 2 faulty nodes are
created and we get 18 agents count and 8 acknowledge count
instead of 20 and 10 this verify the conclusion drawn
according to first simulation results.

Figure 6: Simulation results for faultless conditions (total simulation time

2.2 minutes)

Result shown in Figure 6 shows the simulation for
faultless network. There are all nodes are not faulty or
suspicious.

Conclusion is drawn on the basis that it sends total 10
monitoring & dummy agents and receives 10
acknowledgements. We get 20 agents count out of 20 which
shows all nodes are ok according to first simulation result.

V. CONCLUSIONS

 The simulation model thus implemented is used to
study the behaviour of mobile agents in some important
Internet applications where they are believed to have better
performance. The analysis of the results thus obtained shows
the protection of mobile agent against malicious host and very
high chances of successful completion of task and depends
only on bandwidth of system and time out limit of agent. We
can further enhance it by applying retry on time out. The
simulation also shows the no agent blocking for any number
of faulty nodes.

Some draw back shows the increase in delay, but this
can be overcome by flooding multiple dummy agents to
multiple nodes simultaneously. The overhead and process
utilization can be minimized by reducing the size of dummy
agent.

REFERENCES

[1] Ichiro Satoh. Selection of Mobile Agents. In Proceedings of the 24th

International Conference on Distributed Computing Systems
(ICDCS’04). IEEE Computer Society Press, 2004.

[2] J. White, “Mobile Agents White Paper,” General Magic Inc., 1996.
[3] D. Milojici, ”Mobile agent applications”, IEEE concurrency, July-Sep

1999, pp 80- 90.
[4] Chandra Krintz, Security in agent-based computing environments using

existing tools. Technical report, University of California, San Diego,
1998.

[5] Joshua D. Guttman and Vipin Swarup. Authentication for mobile
agents. In LNCS, pages114–136. Springer, 1998.

[6] Neeran Karnik. Security in Mobile Agent Systems. PhDthesis,
Department of Computer Science and Engineering. University of
Minnesota,1998.

[7] Tomas Sander and Christian F. Tschudin. Protecting Mobile Agents
Against Malicious Hosts.In Giovanni Vigna, editor, Mobile Agent
Security, pages 44–60. Springer-Verlag: Heidelberg,Germany, 1998.

[8] Bennet Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon
University, 1994.

[9] Bennet Yee. A sanctuary for mobile agents. In J. Vitek and C. Jensen,
editors, Secure Internet Programming, volume 1603 in LNCS, pages
261–274, New York, NY, USA, 1999. Springer-Verlag Inc.

[10] Tomas Sander and Christian Tschudin. Towards mobile cryptography.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
215–224, Oakland, CA, May 1998. IEEE Computer Society Press.

[11] Tomas Sander and Christian F. Tschudin. Protecting Mobile Agents
Against Malicious Hosts.In Giovanni Vigna, editor, Mobile Agent
Security, pages 44–60. Springer-Verlag: Heidelberg,Germany, 1998.

[12] Fritz Hohl. Time limited blackbox security: Protecting mobile agents
from malicious hosts. In G. Vigna, editor, Mobile Agents and Security,
volume 1419 in LNCS, pages 92–113. Springer-Verlag, Berlin, 1998.

Neelesh kumar Panthi et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (4) , 2010, 208-211

211

