
Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 8-18

8

Abstract
Our aim is to create NLWA
technique which will be able to
retrieve resources from a knowledge
base in a more efficient way to
respond to the ambiguity problem
that occurs when performing the
search using the search engine. This
system was implemented with the
fundamental concept of Natural
Language processing (NLP) whereby
it differentiates the similar meaning
(synonyms) or multiple meaning
(polysemous) of the word if it has
any. The user’s NL question is
processed in three steps. Firstly, the
linguistic pre-processing, secondly
the translation of the linguistic pre-
processed user question into a
computer readable and
unambiguous form with respect to a
given ontology, and thirdly the
retrieval of pertinent documents.
The NLWA is an intermediary which
establishes a link between it and
Google search engine and able to
return and generate the synonyms
or differentiate the meanings of the
word that input in NLWA and
produces output (expected results)
directly from search engine.

Introduction

The World Wide Web (WWW) can be
seen as an enormous database of

heterogeneous resources which is
growing continuously. Query and
Information retrieval is one of the
central issues in WWW. We should
also observe that in the absence of a
formal language as SQL for
databases, natural language,
remains the only way for querying
the web . On the other hand it is
very difficult to deal with the large
number of languages and the
heterogeneous domains of resources.
Therefore most of the Internet query
tools allow as input keywords,
sometimes connected with logical
operators. There are at least two
consequences of this restriction: -
the user who is actually
concentrated on his search topic,
must try to synthetise his query in
this logical form, and find operators
which fit to his scope.

Even with these logical operators, in
the absence of a semantic
representation of the query, and in
parallel of the existent resources,
the retrieved information will be
partially out of the scope of the
query. The Semantic web activities
aim to give a solution to the latter
point. As for the first, the only
possibility to get out of the
paradigms: “keywords”+”logical
operators” is the use of natural
language. It is however difficult to
control also the complete syntax,

AMBIQUITY RESOLUTION IN SEARCH ENGINE USING NATURAL LANGUAGE WEB APPLICATION

Azeez Nureni Ayofe
Department of Maths & Computer Science,
College of Natural and Applied Sciences,
Fountain University, Osogbo,
Osun State, Nigeria.
E-mail address: nurayhn@yahoo.ca

Azeez Raheem Ajetola
Department of Maths & Computer
Science, College of Natural and Applied
Sciences,
Fountain University, Osogbo,
Osun State, Nigeria.

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

9

and the level of user’s language
knowledge. Most part of the web
users are non-native English
speakers, but they are using English
as query language. On the other
hand, any rule-based approach in
natural language analysis will make
first a syntactic analysis, and even
very robust (i.e. fault-tolerant)
grammars fail to certain
grammatical errors.
From this point of view, the
empirical corpus based approach
would be much more suited, but
here arise again the problem of lack
of data. The syntax analysis needs,
when using empirical methods, tree-
banks for the analyzed language.
First of all, such tree banks are
available for a reduced number of
languages, secondly, they are not
usually access free. Taking into
account the above described
problems, the only viable solution
seems to be the use of a controlled
language input, which still offers the
user the power of natural language,
but prevents the user from syntactic

mistakes. In this paper we will
present the architecture and general
principles of such a system.

However, the search engines are
subject to the problem of generated
unwanted or irrelevant information
in the search result. The keyword(s)
enter by user to perform a search
may contain different meaning as
represented different “sense”
between verb and noun. In other
words, the keywords that input may
have multiple meaning which can
lead to ambiguity problem. This
ambiguity problem is mainly
because of the search engines do
not consider the

exact meaning of the search query
but only consider the keywords
matching of the search query based
on the indexes. In addition, the
“keyword may not be able to convey
complex search semantics a user
wishes to express” and thus return
the irrelevant information that are

Figure 1. High Level Google Architecture

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 8-18

10

not the user desires. Due to the
ambiguity problem, a prototype that
applies the fundamental concept of
natural language processing (NLP)
was proposed.

The idea of NLWA is to differentiate
the meaning behind a word and to
clustering the similar meaning of a
word that input to the search engine.
NLWA will function on top of Google
search engines as a middleware to
look into the meaning of the word
that enters by user and in turn
performs the search in Google
search engine.
2.1 Google Architecture Overview
In this section, we will give a high
level overview of how the whole
system works as pictured in Figure
1. Further sections will discuss the
applications and data structures not
mentioned in this section. Most of
Google is implemented in C or C++
for efficiency and can run in either
Solaris or Linux.

In Google, the web crawling
(downloading of web pages) is done
by several distributed crawlers.
There is a URLserver that sends lists
of URLs to be fetched to the crawlers.
The web pages that are fetched are
then sent to the storeserver. The
storeserver then compresses and
stores the web pages into a
repository. Every web page has an
associated ID number called a docID
which is assigned whenever a new
URL is parsed out of a web page.
The indexing function is performed
by the indexer and the sorter. The
indexer performs a number of
functions. It reads the repository,
uncompresses the documents, and
parses them. Each document is
converted into a set of word
occurrences called hits. The hits
record the word, position in
document, an approximation of font
size, and capitalization. The indexer

distributes these hits into a set of
"barrels", creating a partially sorted
forward index. The indexer performs
another important function. It
parses out all the links in every web
page and stores important
information about them in an
anchors file. This file contains
enough information to determine
where each link points from and to,
and the text of the link.

The URLresolver reads the anchors
file and converts relative URLs into
absolute URLs and in turn into

docIDs. It puts the anchor text into
the forward index, associated with
the docID that the anchor points to.
It also generates a database of links
which are pairs of docIDs. The links
database is used to compute
PageRanks for all the documents.

The sorter takes the barrels, which
are sorted by docID (this is a
simplification, and resorts them by
wordID to generate the inverted
index. This is done in place so that
little temporary space is needed for
this operation. The sorter also
produces a list of wordIDs and
offsets into the inverted index. A
program called DumpLexicon takes
this list together with the lexicon
produced by the indexer and
generates a new lexicon to be used
by the searcher. The searcher is run
by a web server and uses the lexicon
built by DumpLexicon together with
the inverted index and the
PageRanks to answer queries.

2.2 Major Data Structures

Google's data structures are
optimized so that a large document
collection can be crawled, indexed,

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

11

and searched with little cost.
Although, CPUs and bulk input
output rates have improved
dramatically over the years, a disk
seek still requires about 10 ms to
complete. Google is designed to
avoid disk seeks whenever possible,
and this has had a considerable
influence on the design of the data
structures.

2.2.1 BigFiles

BigFiles are virtual files spanning
multiple file systems and are
addressable by 64 bit integers. The
allocation among multiple file

systems is handled automatically.
The BigFiles package also handles
allocation and deallocation of file
descriptors, since the operating
systems do not provide enough for
our needs. BigFiles also support
rudimentary compression options.

2.2.2 Repository

The repository contains the full
HTML of every web page. Each page
is compressed using zlib. The choice
of compression technique is a
tradeoff between speed and
compression ratio. We chose zlib's
speed over a significant
improvement in compression offered
by bzip. The compression rate of
bzip was approximately 4 to 1 on

the repository as compared to zlib's
3 to 1 compression. In the
repository, the documents are
stored one after the other and are
prefixed by docID, length, and URL
as can be seen in Figure 2. The
repository requires no other data
structures to be used in order to
access it. This helps with data
consistency and makes development
much easier; we can rebuild all the
other data structures from only the
repository and a file which lists
crawler errors.

2.2.3 Document Index

The document index keeps
information about each document. It
is a fixed width ISAM (Index
sequential access mode) index,
ordered by docID. The information
stored in each entry includes the
current document status, a pointer
into the repository, a document
checksum, and various statistics. If
the document has been crawled, it
also contains a pointer into a
variable width file called docinfo
which contains its URL and title.
Otherwise the pointer points into
the URLlist which contains just the
URL. This design decision was
driven by the desire to have a
reasonably compact data structure,
and the ability to fetch a record in
one disk seek during a search

Additionally, there is a file which is
used to convert URLs into docIDs. It
is a list of URL checksums with
their corresponding docIDs and is
sorted by checksum. In order to find
the docID of a particular URL, the
URL's checksum is computed and a
binary search is performed on the

Figure 2. Repository Data Structure

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 8-18

12

checksums file to find its docID.
URLs may be converted into docIDs
in batch by doing a merge with this
file. This is the technique the
URLresolver uses to turn URLs into
docIDs. This batch mode of update
is crucial because otherwise we
must perform one seek for every link
which assuming one disk would
take more than a month for our 322
million link dataset.

2.2.4 Lexicon

The lexicon has several different
forms. One important change from
earlier systems is that the lexicon
can fit in memory for a reasonable
price. In the current implementation
we can keep the lexicon in memory
on a machine with 256 MB of main
memory. The current lexicon
contains 14 million words (though
some rare words were not added to
the lexicon). It is implemented in
two parts -- a list of the words
(concatenated together but
separated by nulls) and a hash table
of pointers. For various functions,
the list of words has some auxiliary
information which is beyond the
scope of this paper to explain fully.

2.2.5 Hit Lists

A hit list corresponds to a list of
occurrences of a particular word in
a particular document including
position, font, and capitalization
information. Hit lists account for
most of the space used in both the
forward and the inverted indices.
Because of this, it is important to
represent them as efficiently as
possible. We considered several
alternatives for encoding position,
font, and capitalization -- simple
encoding (a triple of integers), a
compact encoding (a hand optimized
allocation of bits), and Huffman

coding. In the end we chose a hand
optimized compact encoding since it
required far less space than the
simple encoding and far less bit
manipulation than Huffman coding.
The details of the hits are shown in
Figure 3.

Our compact encoding uses two
bytes for every hit. There are two
types of hits: fancy hits and plain
hits. Fancy hits include hits
occurring in a URL, title, anchor text,
or meta tag. Plain hits include
everything else. A plain hit consists
of a capitalization bit, font size, and
12 bits of word position in a
document (all positions higher than
4095 are labeled 4096). Font size is
represented relative to the rest of
the document using three bits (only
7 values are actually used because
111 is the flag that signals a fancy
hit). A fancy hit consists of a
capitalization bit, the font size set to
7 to indicate it is a fancy hit, 4 bits
to encode the type of fancy hit, and
8 bits of position. For anchor hits,
the 8 bits of position are split into 4
bits for position in anchor and 4 bits
for a hash of the docID the anchor
occurs in. This gives us some
limited phrase searching as long as
there are not that many anchors for
a particular word. We expect to
update the way that anchor hits are
stored to allow for greater resolution
in the position and docIDhash fields.
We use font size relative to the rest
of the document because when
searching, you do not want to rank
otherwise identical documents
differently just because one of the
documents is in a larger font.

 The length of a hit list is stored
before the hits themselves. To save
space, the length of the hit list is
combined with the wordID in the
forward index and the docID in the
inverted index. This limits it to 8

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

13

and 5 bits respectively (there are
some tricks which allow 8 bits to be
borrowed from the wordID). If the
length is longer than would fit in
that many bits, an escape code is
used in those bits, and the next two
bytes contain the actual length.

2.2.6 Forward Index

The forward index is actually
already partially sorted. It is stored
in a number of barrels (we used 64).
Each barrel holds a range of
wordID's. If a document contains
words that fall into a particular
barrel, the docID is recorded into
the barrel, followed by a list of
wordID's with hitlists which
correspond to those words. This
scheme requires slightly more
storage because of duplicated
docIDs but the difference is very
small for a reasonable number of
buckets and saves considerable time
and coding complexity in the final
indexing phase done by the sorter.
Furthermore, instead of storing
actual wordID's, we store each
wordID as a relative difference from
the minimum wordID that falls into
the barrel the wordID is in. This way,
we can use just 24 bits for the
wordID's in the unsorted barrels,
leaving 8 bits for the hit list length.

2.2.7 Inverted Index

The inverted index consists of the
same barrels as the forward index,
except that they have been
processed by the sorter. For every
valid wordID, the lexicon contains a
pointer into the barrel that wordID
falls into. It points to a doclist of
docID's together with their
corresponding hit lists. This doclist
represents all the occurrences of
that word in all documents.

An important issue is in what order
the docID's should appear in the
doclist. One simple solution is to
store them sorted by docID. This
allows for quick merging of different
doclists for multiple word queries.
Another option is to store them
sorted by a ranking of the
occurrence of the word in each
document. This makes answering
one word queries trivial and makes
it likely that the answers to multiple
word queries are near the start.
However, merging is much more
difficult. Also, this makes
development much more difficult in
that a change to the ranking
function requires a rebuild of the
index. We chose a compromise
between these options, keeping two
sets of inverted barrels -- one set for
hit lists which include title or
anchor hits and another set for all
hit lists. This way, we check the first
set of barrels first and if there are
not enough matches within those
barrels we check the larger ones.

3.0 Query Processor

Query processing has seven possible
steps, though a system can cut
these steps short and proceed to
match the query to the inverted file
at any of a number of places during
the processing. Document
processing shares many steps with
query processing. More steps and
more documents make the process
more expensive for processing in
terms of computational resources
and responsiveness. However, the
longer the wait for results, the
higher the quality of results. Thus,
search system designers must
choose what is most important to
their users — time or quality.
Publicly available search engines
usually choose time over very high
quality, having too many documents
to search against.

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 8-18

14

The steps in query processing are as
follows (with the option to stop
processing and start matching
indicated as "Matcher"):

 Tokenize query terms.
Recognize query terms vs.
special operators.
————————> Matcher

 Delete stop words.
 Stem words.
 Create query representation.

————————> Matcher

 Expand query terms.
 Compute weights.

————————> Matcher

Step 1: Tokenizing. As soon as a
user inputs a query, the search
engine — whether a keyword-based

system or a full natural language
processing (NLP) system — must
tokenize the query stream, i.e.,
break it down into understandable
segments. Usually a token is defined
as an alpha-numeric string that
occurs between white space and/or
punctuation.

Step 2: Parsing. Since users may
employ special operators in their
query, including Boolean, adjacency,
or proximity operators, the system
needs to parse the query first into
query terms and operators. These
operators may occur in the form of
reserved punctuation (e.g.,
quotation marks) or reserved terms
in specialized format (e.g., AND, OR).
In the case of an NLP system, the
query processor will recognize the
operators implicitly in the language
used no matter how the operators
might be expressed (e.g.,
prepositions, conjunctions, ordering).

At this point, a search engine may
take the list of query terms and
search them against the inverted file.
In fact, this is the point at which the
majority of publicly available search
engines perform the search.

Steps 3 and 4: Stop list and
stemming. Some search engines
will go further and stop-list and
stem the query, similar to the
processes described above in the
Document Processor section. The
stop list might also contain words
from commonly occurring querying
phrases, such as, "I'd like
information about." However, since
most publicly available search

engines encourage very short
queries, as evidenced in the size of

query window provided, the engines
may drop these two steps.

Step 5: Creating the query. How
each particular search engine
creates a query representation
depends on how the system does its
matching. If a statistically based
matcher is used, then the query
must match the statistical
representations of the documents in
the system. Good statistical queries
should contain many synonyms and
other terms in order to create a full
representation. If a Boolean matcher
is utilized, then the system must
create logical sets of the terms
connected by AND, OR, or NOT.

An NLP system will recognize single
terms, phrases, and Named Entities.
If it uses any Boolean logic, it will
also recognize the logical operators
from Step 2 and create a

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

15

representation containing logical
sets of the terms to be AND'd, OR'd,
or NOT'd.

At this point, a search engine may
take the query representation and
perform the search against the
inverted file. More advanced search
engines may take two further steps.

Step 6: Query expansion. Since
users of search engines usually
include only a single statement of
their information needs in a query,
it becomes highly probable that the
information they need may be
expressed using synonyms, rather
than the exact query terms, in the
documents which the search engine
searches against. Therefore, more
sophisticated systems may expand
the query into all possible
synonymous terms and perhaps
even broader and narrower terms.

This process approaches what
search intermediaries did for end
users in the earlier days of
commercial search systems. Back
then, intermediaries might have
used the same controlled vocabulary
or thesaurus used by the indexers
who assigned subject descriptors to
documents. Today, resources such
as WordNet are generally available,
or specialized expansion facilities
may take the initial query and
enlarge it by adding associated
vocabulary.

Step 7: Query term weighting
(assuming more than one query
term). The final step in query
processing involves computing
weights for the terms in the query.
Sometimes the user controls this
step by indicating either how much
to weight each term or simply which
term or concept in the query

matters most and must appear in
each retrieved document to ensure
relevance.

Leaving the weighting up to the user
is not common, because research
has shown that users are not
particularly good at determining the
relative importance of terms in their
queries. They can't make this
determination for several reasons.
First, they don't know what else
exists in the database, and
document terms are weighted by
being compared to the database as a
whole. Second, most users seek
information about an unfamiliar
subject, so they may not know the
correct terminology.

Few search engines implement
system-based query weighting, but
some do an implicit weighting by
treating the first term(s) in a query
as having higher significance. The

engines use this information to
provide a list of documents/pages to
the user.

After this final step, the expanded,
weighted query is searched against
the inverted file of documents.

4.0 Operation of Natural Language
for Web Application (NLWA)

NLWA work as the middle engine,
try to cluster the similar meaning of
word and in return on the search in
search engines by differentiates
between the types of word. The
differentiation is done by looking
into the type of word respective in
verb, noun, and adjective to obtain
the meaning behind the word. The
purpose of differentiate is to

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 8-18

16

disambiguate the word that has
multiple meaning. This is because
certain word has multiple meaning
in different type either is verb or
noun which present different of
meaning may lead to the retuned of
irrelevant search results. As the
meaning that present for the word
that is polysemous are normally
totally different. Additionally, the
purpose of clustering is to group the
similar meaning or synonymy of the
word together in order to increase
the chances of getting the
information that user desire by
looking into the meaning and the
type of the particular word.

4.1 Internal Process of NLWA

Figure 4 below shows the specific
view of the flow of internal process
from the high level view system
framework. The ASP.Net will
connect to the database and retrieve
the dictionary data from the table
that stored in the database. After

retrieved the data, it then return the
value in order to generate the URL.
Specifically, during the retrieving
process, the ASP.Net will read row
by row to look for the data that
stored in the table “WORD” column.
In this case, when it matches the

WEB

WEB

WEB

GOOGLE

Generate
URL

Natural

Language

Web

Applicatio

Fig. 4 Concept of NLWA

Natural
Language

Web
Application

ASP.Net
Connect

Oracle Database

Return Retrieve

Table showing: Word, Type and Similar Word

Fig5. Framework of NLWA

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

17

data that stored in the “WORD”
column based on the word that user
key in, it will return the value that
stored in the “SIMILAR_MEANING”

column to ASP.Net. The value refers
to the similar meaning of word
which is clustered in the database

according to the meaning of the
particular word. Lastly, when the
value returns to ASP.Net, it will pass
in each returned value as parameter
to generate with the URL together in
order to link to Google. With the
parameters that pass it, Google is
being informed what to search.

5.0 Application of NLWA

A test for some selected words is
applied so as to evaluate the actual
meaning behind the words. NLWA
will differentiate the types and
meaning of “choose” for example
and produces the equivalent
meaning. Natural language
processing (NLP) has the
advantages of break the impasse
and open up the possibilities of the
Semantic Web. First, NLP systems
can now automatically create
annotations from unstructured text.
This provides the data that semantic
web applications require. Second,
NLP systems are themselves
consumers of semantic web
information and thus provide
economic motivation for people to
create and maintain such
information. A new generation of
natural language search systems
can take advantage of semantic web
markup and ontologies to augment
their interpretation of underlying
textual content. They can also
expose semantic web services
directly in response to natural
language queries.

Instead of clustering word that has
similar meaning, NLWA
differentiated words that has
multiple meaning as well. Again, the
input of a word “choose” to the
NLWA , the differentiation between
the types and meaning of the word
“choose” is processed. Thus, the
input word has multiple meanings
of “order’ as shown in figure 6 below.

Fig. 6 Testing page on input
of keyword “choose” in NLWA
However, Google search engine
returned the search result according
to the parameter on the meaning
that a user might select. By showing
all the meanings of the word that is
polysemous, users can review which
sense of meaning that the word
present and select which they want
to search.

As a result, in comparing the results
gathered from NLWA to the normal
search on Googles, researchers find
that the results returned applying
the concept of NLWA has improved
and also solved the ambiguity
problem that occurs in performing
the search using the search engine.

6.0 Conclusions
This paper has presented the how
search engines work and explored
the architecture of each. Secondly,
based on the research hypothesis
that has been proved, the ambiguity
words may lead to the return of
irrelevant search result of the
search engines. Moreover, based on
the ambiguity problem of a word
that is polysemous, the solution is
designed to identify the meaning of
word or synonyms for the word that
is input in the Natural Language
Web Application (NLWA) are working.
With the dictionary data which
clustering for the similar meaning of
word that stored in the database,
the prototype is able to return either
the meaning or synonyms of the
word that input based on the type of

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 8-18

18

the word in verb, noun, or adjective.
Also, the test shows that the NLWA
consists of the function that
described and able to return the
appropriate parameters.

7.0 References

[1] J. Allen. Natural Language
Understanding. Addison Wesley, 1994.

[2] B. Katz. Annotating the world wide web
using natural language. In 5th RIAO
conference on computer assisted
information searching on the internet,
Montreal,
Canada, 1997.

[3] Dr. Derek Bridge (2004), “Natural
Language Processing (NLP)”, University
College Cork, Ireland,
www.cs.ucc.ie/dgb/courses/ai/notes/notes41.
pdf, 18 February 2008.

[4] Qiang Yang, Hai-Feng Wang, Ji-Rong
Wen, Gao Zhang, Ye Lu1, Kai-Fu Lee,
Hong-Jiang Zhang, (2000) “Towards A
Next-Generation Search Engine”, pp. 1.

[5] TechWeb Network, “Search Engines”,
http://www.techweb.com/encyclopedia/defin
eterm.jhtml?ter
m=Search+Engine , 24 February 2008.

[6] Jorge Gracia, Raquel Trillo, Mauricio
Espinoza, Eduardo Mena, July 2006,
‘Querying the Web: a multiontology
disambiguation method’, ACM Press,
University of Zaragoza, 22 February 2008,
pp.241-242.

[7] Danny Sullivan (c) (2007), "How Search
Engines Work”, Search Engine Watch,
http://searchenginewatch.com/showPage.ht
ml?page=216803 1, 18 March 2008.

[8] Yelena Shapiro and Etelka Lehoczky
(2003), “How do search engines work?”,
SearchEnignes.com,
http://www.searchengines.com/search_engin
es_101.html, 25 February 2008.

[9] Elizabeth Liddy (2001), “How a Search
Engine Works ”, Director of the Center for
Natural Language Processing Professor,
School of Information Studies, Syracuse
University, Vol. 9 No. 5,

http://www.infotoday.com/searcher/may01/l
iddy.htm, 26 February 2008.

[10] UC Berkeley Library (Jan, 2008),
“How do search engines work?”,
http://www.lib.berkeley.edu/TeachingLib/G
uides/Internet/Se
archEngines.html, 25 February 2008.

[11] Curt Franklin, “How Internet Search
Engines Work”,
http://www.howstuffworks.com/search-
engine.htm, 26 February 2008.

[12] Wendy Boswell, “How Do Search
Engines Work?”,
http://websearch.about.com/od/enginesanddi
rectories/

