
Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

1

Asynchronous method invocation in Join java and polyphonic
c#

Kamalakshi N Dr.H.Naganna
Asst Professor, Professor & Head
Dept of Computer Science &Engg Dept of Information Science
Saptagiri College of Engineering, &Engg SJB Institute of
Bangalore INDIA Technology,Bangalore INDIA
 kamalnags@gmail.com naganna_h@hotmail.com

Abstract: In most programming
languages a called method is executed
synchronously, i.e. in the thread of
execution from which it is invoked. If
the method needs a long time to
completion, e.g. because it is loading
data over the internet, the calling
thread is blocked until the method has
finished. When this is not desired, it is
possible to start a "worker thread" and
invoke the method from there. In most
programming environments this
requires many lines of code, especially
if care is taken to avoid the overhead
that may be caused by creating many
threads. AMI solves this problem in
that it augments a potentially long-
running ("synchronous") object
method with an "asynchronous"
variant that returns immediately, along
with additional methods that make it
easy to receive notification of
completion, or to wait for completion at
a later time. This paper focuses on
asynchronous method invocation in two
popular languages Join java and C# .

1 .Introduction

In (multithreaded) object-oriented
programming, asynchronous method
invocation (AMI), also known as
asynchronous method calls or
asynchronous pattern is a design pattern
for asynchronous invocation of
potentially long-running methods of an
object.[1] It is equivalent to the IOU

pattern described in 1996 by Allan
Vermeulen.[2][3]. The event-based
asynchronous pattern in .NET
Framework and the
java.util.concurrent.FutureTask class in
Java use events to solve the same
problem. This pattern is a variant of
AMI whose implementation carries more
overhead, but it is useful for objects
representing software components.

One common use of AMI is in the active
object design pattern. Alternatives are
synchronous method invocation and
future objects[4].An example for an
application that may make use of AMI is
a web browser that needs to display a
web page even before all images are
loaded.

 The following are possible reasons for
defining a method as asynchronous:

The function within the method
uses the update task - The
method is terminated by an event
generated when the update task is
successful. If you nevertheless
define the method as a
synchronous method under these
circumstances, the workflow data
may be inconsistent with the
current data in the database due
to update terminations or delays.

The method can also be called
outside the workflow - If it is

 Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

2

possible that a user may call the
function encapsulated in the
method outside the workflow
although the object is also being
processed under the control of a
workflow at the same time, you
should implement the method as
an asynchronous method. It is
therefore irrelevant whether
calling the function takes place
inside or outside the workflow
system. The workflow continues
after the event occurs.

An asynchronous method with
comprehensive functionality is
called in the task - This task gets
its specific character from the
terminating events. e.g., In a task,
a specific order is to be released
for billing. In the task, call the
(general) method Process order
and enter the event Billing block
deleted as the terminating event.

It is also to be possible for the task to be
terminated by events not necessarily
from method processing - The task in
which the method Process sales order is
executed is also terminated by the event
Customer unable to pay

2Join Java

Join Java is a programming language
that extends the standard Java
programming language with the join
semantics of the join-calculus. It was
written at the University of South
Australia within the Reconfigurable
Computing Lab by Dr. Von Itzstein.

The Join Java extension introduces three
new language constructs:

 Join methods

 Asynchronous methods
 Order class modifiers for

determining the order that
patterns are matched

Concurrency in most popular
programming languages is implemented
using constructs such as semaphores and
monitors. Libraries are emerging (such
as the Java concurrency library JSR-166)
that provide higher-level concurrency
semantics. Communicating Sequential
Processes (CSP), Calculus of
Communicating Systems (CCS) and Pi
have higher-level synchronization
behaviours defined implicitly through
the composition of events at the
interfaces of concurrent processes. Join
calculus, in contrast, has explicit
synchronization based on a localized
conjunction of events defined as
reduction rules. Join semantics try to
provide explicit expressions of
synchronization without breaching the
object-oriented idea of modularization,
including dynamic creation and
destruction of processes and channels.

The Join Java language can express
virtually all published concurrency
patterns without explicit recourse to low-
level monitor calls. In general, Join Java
programs are more concise than their
Java equivalents. The overhead
introduced in Join Java by the higher-
level expressions derived from the Join
calculus is manageable. The
synchronization expressions associated
with monitors (wait and notify) which
are normally located in the body of
methods can be replaced by Join Java
expressions (the Join methods) which
form part of the method signature.

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

3

Join methods

A Join method is defined by two or more
Join fragments. A Join method will
execute once all the fragments of the
Join pattern have been called. If the
return type is a standard Java type then
the leading fragment will block the caller
until the Join pattern is complete and the
method has executed. If the return type
is of type signal then the leading
fragment will return immediately. All
trailing fragments are asynchronous so
will not block the caller.

Example:

class JoinExample {
 int fragment1() &
fragment2(int x) {
 //will return value of x
 //to caller of fragment1
 return x;
 }
}

Ordering modifiers

Join fragments can be repeated in
multiple Join patterns so there can be a
case when multiple Join patterns are
completed when a fragment is called.
Such a case could occur in the example
below if B(), C() and D() then A() are
called. The final A() fragment completes
three of the patterns so there are three
possible methods that may be called.
The ordered class modifier is used here
to determine which Join method will be
called. The default and when using the
unordered class modifier is to pick one
of the methods at random. With the
ordered modifier the methods are
prioritised according to the order they
are declared.

Example:

class ordered SimpleJoinPattern
{
 void A() & B() {
 }
 void A() & C() {
 }
 void A() & D() {
 }
 signal D() & E() {
 }
}

Asynchronous methods

Asynchronous methods are defined by
using the signal return type. This has the
same characteristics as the void type
except that the method will return
immediately. When an asynchronous
method is called a new thread is created
to execute the body of the method.

Example:

class ThreadExample {
 signal thread(SomeObject x) {
 //this code will execute
in a new thread
 }
}

C Sharp is a multi-paradigm
programming language that supports
imperative, generic and object-oriented
programming. It is a part of the
Microsoft .NET Framework. It is similar
to C++ in its object-oriented syntax and
is also influenced by Java and Delphi.
Polyphonic C# extends C#. MC# is an
extension of Polyphonic C# that can
work on the .NET platform. C-omega is
an extension to C# that succeeded
Polyphonic C#. It enables access to data
stores and includes constructs that
support concurrent programming.

 Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

4

3.Polyphonic C#

Polyphonic C# adds just two new
concepts: asynchronous methods and
chords.

Asynchronous Methods. Conventional
methods are synchronous, in the sense
that the caller makes no progress until
the callee completes. In Polyphonic C],
if a method is declared asynchronous
then any call to it is guaranteed to
complete essentially immediately.
Asynchronous methods never return a
result (or throw an exception); they are
declared by using the async keyword
instead of void. Calling an asynchronous
method is much like sending a message,
or posting an event.Since asynchronous
methods have to return immediately, the
behaviour of a method such as async
postEvent(EventInfo data) f // large
method body g is the only thing it could
reasonably be: the call returns
immediately and ‘large method body’ is
scheduled for execution in a different
thread (either a new one spawned to
service this call, or a worker from some
pool). However, this kind of definition is
actually rather rare in Polyphonic C].
More commonly, asynchronous methods
are defined using chords, as described
below, and do not necessarily require
new threads.

Chords. A chord (also called a
‘synchronization pattern’, or ‘join
pattern’) consists of a header and a body.
The header is a set of method
declarations separated by ‘&’. The body
is only executed once all the methods in
the header have been called. Method
calls are implicitly queued up
until/unless there is a matching chord.
Consider for example
public class Buffer {

public string Get() & public async
Put(string s) {
return s;
}
}
The code above defines a class Buffer
with two instance methods, which are
jointly defined in a single chord. Method
string Get() is a synchronous method
taking no arguments and returning a
string. Method async Put(string s) is
asynchronous (so returns no result) and
takes a string argument.
If buff is a instance of Buffer and one
calls the synchronous method buff .Get()
then there are two possibilities:
—If there has previously been an
unmatched call to buff .Put(s) (for some
string s) then there is now a match, so
the pending Put(s) is dequeued and the
body of the chord runs, returning s to the
caller of buff .Get().
—If there are no previous unmatched
calls to buff .Put(.) then the call to buff
.Get() blocks until another thread
supplies a matching Put(.).
Conversely, on a call to the
asynchronous method buff .Put(s), the
caller never waits, but there are two
possible behaviours with regard to other
threads:
—If there has previously been an
unmatched call to buff .Get() then there
is now a match, so the pending call is
dequeued and its associated blocked
thread is
awakened to run the body of the chord,
which returns s.
—If there are no pending calls to buff
.Get() then the call to buff .Put(s) is
simply queued up until one arrives.
Exactly which pairs of calls are matched
up is unspecified, so even a single-
threaded program such as
Buffer buff = new Buffer();
buff .Put(”blue”);

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

5

buff .Put(”sky”);
Console.Write(buff .Get() + buff .Get());
is non-deterministic (printing either
”bluesky” or ”skyblue”).
Note that the implementation of Buffer
does not involve spawning any threads:
whenever the body of the chord runs, it
does so in a preexisting thread (viz. the
one that called Get()). The reader may at
this point wonder what are the rules for
deciding in which thread a body runs, or
how we know to which method call the
final value computed by the body will be
returned. The answer is that in any given
chord, at most one method may be
synchronous. If there is such a method,
then the body runs in the thread
associated with a call to that method, and
the value is returned to that call. Only if
there is no such method (i.e. all the
methods in the chord are asynchronous)
does the body run in a new thread, and in
that case there is no value to be returned.
It should also be pointed out that the
Buffer code, trivial though it is, is
threadsafe.The locking that is required
(for example to prevent the argument to
a single Put being returned to two
distinct Gets) is generated automatically
by the compiler.More precisely, deciding
whether any chord is enabled by a call
and, if so, removing the other pending
calls from the queues and scheduling the
body for execution is an atomic
operation. Apart from this atomicity
guarantee, however, there is nomonitor-
like mutual exclusion between chord
bodies. Any mutual exclusion that is
required must be programmed explicitly
in terms of synchronization conditions in
chord headers.
The Buffer example uses a single chord
to define two methods. It is also possible
(and common) to have multiple chords
involving a given method. For example:
public class Buffer {

public string Get() & public async
Put(string s) {
return s;
}
public string Get() & public async
Put(int n) {
return n.ToString();
}

}

The second new syntax that is enabled in
chords is the ability to “join” methods
with each other. Two or more methods
joined with each other are what we refer
to as a “chord.” All method calls are
kept in a queue, and the body of a chord
is executed when all the joined methods
in a chord are present in the queue. The
syntax for joining a chord is simply
listing all the methods in the chord
separated by an ampersand (“&”). Going
back to the previous example,
public class ClassUsingAsyncVersion2
{
public async m1();
public async m2();
when m1() & m2()
{
//method stuff
}
}
As is the case here, chords may be
composed entirely of asynchronous
methods. In this case, each call to m1()
or m2() completes instantaneously as
normal and the calling thread continues
immediately following the call. Each
object has an underlying queue in which
it stores all calls to methods that have
not been part of a completed chord.
When all the methods of a chord are
found in this queue, and the chord is
composed of only asynchronous
methods as in the example above, the
chord body is not executed in any of

 Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

6

the calling threads. After all, how would
we decide which one to interrupt?
Instead, a new thread is created, or an
available thread is drawn from a thread
pool, depending on the implementation.
It is also possible for a chord to return a
value if one of the methods in the chord
is synchronous. That is, only one method
may have a return type other than
“async.” When a thread makes a call to
the synchronous method in a chord, it
blocks until the chord is completed, at
which point the body of the chord is
executed in the same thread of the
synchronous method. This is important
to note: a chord that contains a
synchronous method does not result in
the creation of a new thread. Building on
the previous example, here is a class
with a synchronous chord:
public class ClassUsingAsyncVersion3
{
public async m1();
public async m2();
when m1() & m2()
{
//method stuff
}
public int m3() & m1()
{
return 0;
}
}
If a thread makes a call to m3() without
any previous calls to m1() by any other
threads, it
will block and wait to be notified. It will
be notified when another thread makes a
call to m1() and the chord is complete,
and the thread that called m3() will then
execute the code
in the body of the chord, in this case
simply returning “0.” There is one final
important rule to consider about the
behavior of chords. We must decide
what to do when there is more than one

possible chord that could be executed in
the queue, but the two chords share a
method. For example, in the third
version of the ClassWithAsync, as seen
above, m1() is part of two different
chords. In the program above, it might
be the case that there are calls to m2()
and m3() already made, and a call to
m1() completes two chords at the same
time. We must decide which chord
executes and which must wait for
another call to the shared method. In the
original Polyphonic C# paper, it is stated
that generally this decision will be
nondeterministic, i.e. one of them will be
chosen at random, and you should not
write your program to rely on a specific
behavior. A major subject of this paper
is an alternative to this non-determinism
that might make chords more useful.

4.CONCLUSION

This paper discusses on the overview
Join Java and Polyphonic C#

REFERENCES

[1] "Asynchronous Method
Invocation". Distributed
Programming with Ice. ZeroC, Inc..
http://www.zeroc.com/doc/Ice-
3.2.1/manual/Async.34.2.html#711
39. Retrieved 22 November 2008.

[2] Vermeulen, Allan (June 1996). "An
Asynchronous Design Pattern". Dr.
Dobb's Journal.
http://www.ddj.com/184409898.
Retrieved 22 November 2008.

[3] Nash, Trey (2007). "Threading in
C#". Accelerated C# 2008. Apress.
ISBN 9781590598733.

[4] Lavender, R. Greg; Douglas C.
Schmidt (PDF). “Active Object:”
http://www.cs.wustl.edu/~schmidt/
PDF/Act-Obj.pdf. Retrieved 22
November 2008.

[5] Nick benton, Luca cardelli, and
Ce´dric fournet “Modern

Kamalakshi N. et al / International Journal of Computer Science and Information Technology (IJCSIT) 2010, Vol1 (1), 1-7

7

Concurrency Abstractions for C#”
Microsoft Research Lab 2004

[6] Joel Barciauskas “Extensions to
Polyphonic C# “ 2006

