
Buffer Overflow : Anomaly in Application Security

Anwar Ahamed Shaikh,Anurag Srivastava,Ariq Ahmad,Ashutosh Singh and Adnan Abdul Rashid

Department of Computer Science and Engineering,

Integral University,

Lucknow, India.

Abstract— One of the most common attacks of applications

include Buffer Overflow. A buffer overflow, or buffer overrun,

is an anomaly where a program, in which data is being written

to buffer, goes over the buffer's boundary and overwrites side

memory locations. This Violation is perhaps a special case of

memory safety. Software security vulnerability's best known

form is buffer overflow. Even though software developers are

aware of what a buffer overflow vulnerability is, the buffer

overflow attacks for both newly-developed and legacy

applications are very common. Part of this problem lies in the

prevention techniques which are highly error-prone ones, and

part of the problem is because of the nature of buffer overflows

as it can occur in numerous ways. It is the nature of Buffer

Overflows that makes it difficult to be discovered and even if it

is discovered, it can't be exploited easily on general conditions.

Nonetheless, buffer overflows have been identified by attackers

in a surprising array of components and products. In a classic

exploit of buffer overflow, data is stored in undersized stack

buffer that is sent by the attacker in the first place. As a result,

the function's return pointer and all the other information on

the call stack is overwritten. The transfer of control to malicious

code being contained in the attacker's data is occurred when the

function returns as the data has set the value of the return

pointer to it.

I. INTRODUCTION

n computer science, when data is being moved from one
place to another, it is temporarily stored in a dedicated

region of a physical memory known as the data buffer (or just
buffer) [1].

The buffer is mainly used as an intermediate temporary
storage in the physical memory where the reading and writing
speed of source and destination respectively differ for
example a video streaming website. The buffer acts as a queue
thus the writing and reading up of data is varied accordingly
so as to adjust the timing.

In computer security and programming, a buffer overflow,
or buffer overrun, is an anomaly where a program, while
writing data to a buffer, overruns the buffer's boundary and
overwrites adjacent memory locations. Such a contravention
of memory safety is a special case [2].

 Consider an empty glass of water as a buffer. When this
glass is filled with water then the buffer is being filled up,
eventually the glass cannot accommodate more water at this
point the buffer is full. If more water is being poured, then the
water will overflow and the extra water dripping down is now
writing now reaching another surface hence writing on
another memory location which is outside the given bounds of
the buffer hence violates the safety of the memory. This

vulnerability is present in many software’ and acts as a pearl
in the ocean for hackers to exploit.

The exploitation techniques may vary according to the
architecture, memory area and operating system. The unfair
utilization of memory may either be Heap-based or Stack-
based.

II. DISSECTION OF BUFFER OVERFLOW

A. Technical Introduction

Buffer Overflow attacks are common application attacks
which are not so easy to find but happen due to procrastination
of developers in implementing memory management and
security strategies. Most of the Buffer Overflow anomalies
happen in most languages when an array is accessed and its
bounds are not checked, and also when an attacker enters
some data going out of array size, he can write to any
available writable memory address. The real application of
Buffer Overflow is to insert a malicious code by overwriting
function calls and modifying the flow of the program.
Common exploits of Buffer Overflow attacks usually work on
stacks; the exploit overwrites the return address to some other
place to execute its own code in the application [3].

To explain this, we should already know that in real life
scenarios, stack increases to lower memory addresses,
whenever program calls some function, the address of
function call instruction is saved in stack as a return for the
function. When the function executes, it allocates local
variables, including buffers to stack and they are given a lower
address than the return address. So, in this scenario the return
address is a certain level above the base address for buffers
and if the buffer is overflowing, then it is most likely that an
attacker can change return address as well. If the return
address is changed to some random value, then it will cause
segmentation fault, but if the return address is changed to a
certain address where some executable code is present, then
that may complete attackers intended tasks with the
application. The attack code should be in such a way so that
no NULL pointer occurs in the code. Since, the majority of
buffer overflow exploits is dependent upon string operations,
there are generally two methods of injecting the code. The
first method is to put the attack code in the buffer that is being
overflowed, then setting return address to the address of the
buffer. The second method involves filling the buffer with
random memory address and shell codes, and after the return
address, the malicious code is place on the stack. Now, in
order to jump control to the pointer of the stack, which would
actually be pointing to the location just following the return
address, an instruction in either system call or normal code is

I

ACEIT Conference Proceeding 2016

IJCSIT-S204

to be developed which can overwrite the return address, which
will perform the above function of jumping control. The
interesting part here is that, the byte sequence of machine code
which is equivalent to actual command to perform the jump
control event will do the work even if it is present without the
actual command code. This implies that the return address is
actually disguised to be as the correct jump instruction when
in reality it has been overwritten by an address which points to
the middle of an actual command in the code [4].

It is a very tough process to know what will be the base
address of the buffer or what is the return address, so it
requires attackers to run exploit locally on the attacker
machine to guess the right address.

Usually there are two types of buffer overflow attacks.
They are: -

1.Real Stack Overflow: In a real attack, the return address
will be replaced by the address of the top of stack, and terrible
lines of assembly code will follow it, like invoking another
tool. If high privileges are offered to the running corrupt
program, the same privilege level will be provided to the
running tool. The attacker is at more favorable position since
transmission of a little script program is all that it takes for the
whole process to complete.

2.Heap Overflow: Programs implement stack and
dynamically allocated memory too. The input is copied into
the buffer allocated on the heap by the vulnerable program
using a call to function similar to strcpy. The data on the heap
will be overwritten by the correct type of input, which should
be longer than the buffer. The program will neither work as
advertised nor as will it crash. The stack is then corrupted by
the hacker, who notices this behavior, by trying various inputs
until the stack is corrupted. The arbitrary code snippets can be
executed by the attacker after the stack is corrupted [5].

III. PREVENTION AND MITIGATION

A. Array Bounds Checking

In Computer Programming, any method of detecting if a
variable is under specific bounds before it is used is known as
Bounds Checking. It is normally used to ensure that the
bounds of the array are larger than the variable that is being
used as an array index (index checking), or a given type can
hold a particular number (range checking).

A great number of languages (Python, Java, C#) by default
obviate restrict the programmer from going beyond the end of
an array. When this process is performed at runtime, it is
known as Bounds Checking.

The commonly associated Programming languages with
Buffer Overflows include C++ and C, where overwriting or
accessing data protection is not provided by default and no
automatic check is provided for checking that the boundaries
of that array can hold the data written to it. Buffer Overflows
can easily be prevented by bounds checking.

The complete elimination of buffer overflow
vulnerabilities is the biggest advantage of array bounds
checking. Since, every array and pointer operation is supposed
to be checked especially for array- and pointer- intensive

programs, these become the most expensive solution and
therefore they are not preferred for a production system.

B. Return Address Defender

 Return Address Defender or RAD is a user friendly
compiler patch which protects programs from buffer
overflow attacks by automatically storing a copy of return
addresses in a protected area and also when it compiles the
applications, it automatically adds protection code to it [6].
The protected programs’ source code does not need to be
modified provided when RAD is being used to protect a
program. The generated binary code is compatible with
object files and existing libraries, since the layout of stack
frames remains unaltered by RAD.As per experimental
performance measurements, RAD prototype which are
completely operational show that RAD protected programs
experience a small factor of 1.01 to1.31 slow-down.

C. Validating Source of System Calls

 Rabek, et al. have proposed a method [7] called
Detection of Malicious Executables (DOME) that will be
able to detect whether or not malicious code is executing
on the system.

 This is backboned on the fact that most malware codes
will have to make system calls so as to obtain access to
resources of systems such as files etc. This technique is
bifurcated into two parts: preprocessing and monitoring. In
former, the various locations are found out from where all
possible system calls are made by preprocessing of the
executable file as for each system call the address of the
corresponding instruction is stored. This is the address that
would be placed on the stack when the system call is
called by the program. In latter i.e. monitoring step, a
check is made on the return address of the stack with the
list of the return addresses retrieved in the former step. If
there is a match the execution continues else a malicious
code detection is made. Since this will intercept any calls
to access any resources protected by the operating system,
it will be able to detect the malicious code before it is able
to access these resources, thereby preventing damage to
the system, or in the case of worm, self-propagation.

 The major limitation of this method is that it relies on
the malicious code to make system calls. The fact is, much
more damage can still be done even if the malicious code
doesn't make the system call. Another drawback is that it
has no method to deal with wrappers of system calls. If the
code makes system calls using wrapper functions, then the
attack will avoid detection.

D.StackGuard

Another method that has been proposed is called
StackGuard [8]. It is an extension that sandwiches a "canary"
between return address on the stack and the local variables.
The 4-byte canary is a number that is generated randomly
when the programs begins to run. When the execution of the
function completes, the canary is first cross-checked with its
value before transfer of control to the return address on which
the stack was. If it doesn't match, then it may be deduced that

ACEIT Conference Proceeding 2016

IJCSIT-S205

the attack overflowed the buffer in the function which was
recently executed and then the program terminated. Thus, this
method effectively detects the occurrence of the buffer
overflow and eventually kills the process before the attack
code can be executed.

This scheme is not completely foolproof however, as
outlined by Bulba and Kil3r [9]. If the program is vulnerable
to an attack that overwrites a pointer, the attacker can
overwrite that pointer with the address of where the return
address is located. Then a subsequent string copy operation
would overwrite the return address, bypassing the canary
altogether.

IV. CONCLUSION

Buffer Overflow vulnerabilities are a major problem, and
will remain to be unless necessary action is taken. Practices
such as secure coding can be helpful to any future code that is
produced, but still it will not be enough. Mistakes in coding
can even be occurred by careful programmers. Reduction of
the problems by the insecure code can be achieved by static
analysis methods, though it can’t completely solve the
problem. The act of providing protection at a much lower
level, i.e. instruction set randomization and address
obfuscation is perhaps the best way to obviate insecurities
caused by buffer overflow. The attacking of the most
vulnerable code can be made extremely difficult by the
combination is the above two methods.

REFERENCES

[1] Wikipedia,“Databuffer”,Available:
https://en.wikipedia.org/wiki/Data_buffer

[2] Wikipedia,“BufferOverflow”,Available:
https://en.wikipedia.org/wiki/Buffer_overflow

[3] M. Shaneck, “An Overview of Buffer Overflow
Vulnerabilities and Internet Worms,”.

[4] Aleph One, “Smashing the Stack for Fun and Profit”,
Phrack, Volume 7, Issue 49J. Clerk Maxwell, A Treatise
on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68-73.

[5] T. Schwarz, “Buffer Overflow attack”, SCU,2004,
Available:
http://www.cse.scu.edu/~tschwarz/coen152_05/Lectures/
BufferOverflow.html

[6] Tzi-cker Chiueh, Fu-Hau Hsu, "RAD: A Compile-time
Solution to Buffer Overflow Attacks,"International
Conference on Distributed Computing Systems
(ICDCS), Phoenix, Arizona, USA, April 2001,Available:
http://www.ecsl.cs.sunysb.edu/RAD/

[7] J. Rabek, R. Khazan, S. Lewandowski, R. Cunningham,
“Detection of Injected, Dynamically Generated, and
Obfuscated Malicious Code,” In Proceedings of the 2003
ACM workshop on Rapid Malcode, October 2003.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P.
Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
“Stackguard: Automatic dectection and prevention of
buffer-overflow attacks.” In Proceedings of the 7th
USENIX Security Symposium, January 1998.

[9] Bulba and Kil3r, “Bypassing StackGuard and
StackShield,” Phrack, Volume 5, Issue 56.

ACEIT Conference Proceeding 2016

IJCSIT-S206

