
An Intelligent Spatial Aware Search Engine Using

Lucene and Solr

Thirunavukkarasu K1, Priyank Tripathi2, Deepak Upadhay3 and Dr.Manoj Wadhawa4
1,2,3Galgotias University, India, 4Echelon Institute of Technology, India

Abstract- All forms of human activity are rooted in

geographic space in some or the other way. Apparently, many

web resources include references to geographic context. Spatial

Web Portals have drastically improved the sharing and

exchanging of Earth Science data, information and services. We

have collected large amount of geospatial data, metadata and

web data. It has been cataloged and kept available through

SWPs to serve a broad user community. Most search engines in

SWPs are used in this paper based on keyword matching, which

cannot effectively ‘understand’ the meaning of users’ queries,

especially when a user has limited Earth science knowledge. So

finding the needed accurate information from a variety of

geospatial resources becomes a big challenge. We have proposed

a semantic search engine using lucene and solr in this paper to

make the spatial-aware search more intelligent and accurate.

Keywords: SWPs, Lucene, Solr, GPSE

I. INTRODUCTION (HEADING 1)

This World Wide Web is expanding every second just like
the universe. The size of the World Wide Web (The Internet)
The Indexed Web contains at least 4.73 billion pages (Friday,
13 November, 2015).[15] Every moment users are searching
for information on the world wide web using search engines.
However, users do not always get information they expect
when searching the web. Searching the world wide for useful
information web has become too difficult considering the
dynamic and unstructured nature of the web.

 Although there are very efficient general purpose search
engines, but no such spatial search engine is available to
search location based information efficiently and accurately.

Spatial Web Portal (SWP) utilizes the advantages of web
portal techniques, such as easy to configure, share and
integrate, is widely used by the Earth science community in
Earth science data sharing and exchanging. These SWPs store
a large amount of geospatial resources, including text files,
raw and post-processed data, and various geospatial web
services.

Popular SWPs include NASA’s Earth Science Gateway
(ESG), ESIP’s Earth Information Exchange, FGDC’s
Geospatial One Stop Portal, NASA’s Earth Observing System
Clearinghouse, NASA’s Global Change Master Directory and
NOAA’s National Climatic Data Center.

For Geospatial search engine, in order to fetch needed
geospatial information on the web to the end user, the first

important thing is to identify where the geospatial information
is available. When supplied with a spatial query, a typical
search engine only return web pages that include that place
name involved.

GPSE, the response to a query generally is satisfying links
of relevant html pages, which are easy to show for the end
user. On the contrary, spatial information is location-
referenced and is supposed to be rendered as a map.

However, the popular utilizations also stand out problems
of how to find needed data from a variety of geospatial
resources and how to visualize the data from multi-
perspectives.

A large fraction of documents on W3 (World Wide Web)
contains geo-spatial context[16], but conventional search
engines treat the query place name in the same way as any
other keyword and retrieve documents that include the
specified name. Conventional approach may be sufficient for
many users but there are many occasions when user is
interested in documents that are related to the region of space
as user specified in his query, but which might not actually
include the place name. This could generally happen in the
situation when there were documents that used alternative
names, or referred places that were in or nearby the particular
place. In the current work an approach for indexing the
document along with its spatial information is being discussed
that can help to search the spatial data as per ones need.

Spatial Search Engine aims to search the World Wide Web
for geographic information to meet the users’ needs
automatically and conveniently.

Spatial search engines are specialized search engines
primarily dedicated to retrieve geographical information
through web technology[17]. They provide capabilities to
query metadata records for related spatial data, and link
directly to the online content of spatial data themselves.

II. EXISTING WORKS

In past researchers have done some work in the area of geo-

spatial search and developed few products. Google location

search engines and Vicinity products etc are few examples of

such products but not much information has been

published[18]. A spatial search engine named spirit was

developed which had the feature of searching for places in

geographic context like near, in etc. The search engine only

ACEIT Conference Proceeding 2016

IJCSIT-S113

return places and is basically a keyword matching search

engine where there is no scope of intelligently understanding

the user’s search query [1].

III. WHY ONLY LUCENE AND SOLR

 Apache Lucene is a free and open-source

information retrieval software library, written by

Doug Cutting in java and is supported by Apache

Software Foundation and released under the Apache

Software License.

 Apache Lucene is an open source Java-based search

library providing Application Programming

Interfaces for performing common search and search

related tasks like indexing, querying, highlighting,

language analysis and many others [25].

 One popular feature available in Solr is its ability to

do location-based searching. This is most commonly

implemented by indexing a field in each document

containing a geographical point (a latitude and

longitude), and then asking Solr at query time to

filter out documents that do not fall within a

specified radius of some other point.

 Much better and quicker term relevancy ranking,

efficiently customizable at search time.

 Faster search performance for familiar terms or

complicated and complex queries.

 More efficient indexing performance than Postgres.

 Solr has three inbuilt tools, namely geospatial

boundary box, a geospatial filter and a geospatial

distance function.

Solr supports location data for use in geospatial/spatial

searches. Using spatial search, you can:
a. Index polygons ,points ,circles or other shapes
b. Filter search results by a circle or bounding box or

by other shapes
c. Sort or boost scoring by relative area, or distance

between points.
d. Generate a 2D grid of plane count numbers for

point-plotting or heat map generation.

Solr is an open source search platform merged in the Apache

Lucene project. Solr is written in Java and runs as a full text

search server. It includes full-text search, hit highlighting,

near real-time indexing, faceted search, database integration,

dynamic clustering, rich document handling, and geospatial

search. Other strengths are fault tolerant and scalability,

replication, distributed indexing and load-balanced querying,

and automated failover and recovery.

The spatial module is new to Lucene 4.The principle interface

to the module is a Spatial Strategy which encapsulates an

approach to indexing and searching based on shapes.

Different Strategies have distinct features and performance

profiles, which are documented at each Strategy

implementation class level.

Solr is a well-known and widely used search engine that deals

with geographical entities. Solr give us a search solution, well

developed, fast and free, and the support of a large

community of developers.

One can easily find Solr about the kind of a data a field

contains by specifying its field type. Field type basically tells

Solr how to explain the field and how to query it. When a

document is added, Solr extracts the information in the

document’s field to add that information to an index and later

this index can quickly be consulted to provide the matching

documents as result for a given.

Solr represents features, helpful for spatial search. With the

help of these features one can represent the spatial

information along with textual information into index, can

filter data by location while retrieving it from index, and can

sort it based on distance. To incorporate all above mentioned

requirement, SOLR has three inbuilt tools, namely a

geospatial filter, geospatial boundary box and a geospatial

distance function. With the help of geo-filter one can retrieve

all relevant documents within distance from a given point,

e.g. retrieving all documents within 10 km radius from a

given latitude/longitude.

Spatial4j is a general purpose spatial / geospatial ASL
licensed open-source Java library. Its core capabilities are: to
provide common geospatially-aware shapes, to provide
distance calculations and to read and write the shapes to
strings.Spatial4j is largely centered on geometric shape
implementations:Define geometric shapes, both classic
Euclidean/Cartesian two-dimensional ones and geodetic
(surface-of-sphere) ones. Some sample shapes are: point,
rectangle, circle (aka point-distance), polygon, line string

 Compute the bounding box of a shape.

 Compute the intersection case between a pair of

shapes, Intersection cases are intersects, contains,

within, and disjoint.

 Compute the area of a shape.

 Compute the distance between points (plus other

misc. distance / angle calculations).

 Calculate geohash string for a point and compute

the rectangle for a geohash, (plus other misc.

geohash calculations)

IV. MODEL FOR SEARCHING

For Geospatial search engine, in order to fetch needed

geospatial information on the web to the end user, the

first important thing is to identify where the geospatial

information is [22].

Here is a model to take input as a raw data which in form

of indexed by lucene and then connecting as a indexing

pipeline with core solr (base on Lucene and Tika) . Front

end GUI or web search site connected with API layers to

Solr to retrieve spatial point, polygons and represent geo-

data or relevant information geographical map. Spatial

queries, such as range search and nearest neighbour

ACEIT Conference Proceeding 2016

IJCSIT-S114

retrieval, involve only conditions on objects geometric

properties [23].

Searcher: Given a query, it must quickly find nodes:

single point (latitude, longitude), ways (collection of

nodes), relations (logical grouping of ways).To find a

large relevant dataset is normally done with inverted

index and rank to return most relevant documents for

efficient filtering probabilistic data structure(e.g. bloom

filters).

Finding a large relevant subset is normally done with an

inverted index of the corpus; ranking within that set to

produce the most relevant documents, which then must

be summarized for display

Indexer: Creates the inverted index from which the

searcher extracts results. It uses Lucene storing indexes.

Database: Stores the document contents for indexing

and later summarization by the searcher, along with

information such as the link structure of the document

space and the time each document was last fetched.

Fetcher: Requests web pages, parses them, and extracts

links from them.

Figure 1: Model diagram

Indexing Geo-Spatial data

Lucene meets the scalability requirements for text indexing in

Solr[8]. Lucene Spatial indexer used multiple approaches to

index spatial data as class follows:

 Figure 2: Listing for SerializedDVStrategy[14]

1 RecursivePrefixTreeStrategy(RPT):

It is most prominent,versatile grid based technique

used in lucene.It uses Spatial4j library for shapes

and distance calculation under which JTS topology

suite library used for polygons.RPT uses Lucene’s

index as a PrefixTree.Thus it represents shapes as

grid cells of varying precision by prefix. Example:-

 PointD, DR, DRT, DRT2, DRT2Y.

Polygon Many in list… 508 cells.
2 SerializedDVStrategy: It stores serialized geometry

into Lucene BinaryDocValues. It is as accurate as

the underlying geometry coordinates/shape. But it is

a retrievable on a per document basis.

 Figure 2: Listing for SerializedDVStrategy[9]

3 FlexPrefixTree: A new SpatialPrefixTree which is

more flexible than Goehash & Quad. It is

configurable sub cells at each level: 4, 16, 64, 256.

Internally uses an integer coordinate system where

rectangle searches are particularly fast which has

minimal floating conversion. Cells are always

square or equal sides.

4 BBoxSpatialStrategy: Rectangles (Box’s) only one

value per filed. It support wide predicates such as

equals, intersects, within, contains, disjoint. It is

accurate such as 8-byte double floating pount and

area overlap relevancy based on weight search result

by a combination of query shape overlap and index

shape overlap ratios [24].

 Figure3: Solr BboxField [13]

5 SolrBBoxField: It search with overlap ratio

ordering.

abstract class SpatialStrategy
 (5+ concrete implementations)

SpatialArgs args= new

SpatialArgs(INTERSECTS,point);

treeStrategy= new

RecursivePrefixTreeStrategy(grid,”geometry”);

verifyStrategy= new

SerializedDVStrategy(ctx,”serialized_geometry”);

Query treeQuery = new

ConstantScoreQuery(treeStrategy.makeFilter(args));

Query combinedQuery = new

FilteredQuery(treeQuery,verifyStrategy.makeFilter(args),

FilteredQuery.QUERY_FIRST_FILTER_STRATEGY);

ACEIT Conference Proceeding 2016

IJCSIT-S115

3.6 Searching

Figure 4: Core solr spatial search process[10]

qt: It selects a RequestHandler for a query using/select.

DisMaxRequestHandler is used by default.

defType: It selects a query parser for the query. It used all

configuration for RequestHandler.

qf: It selects which fields to query in the index.

start: It specifies an offset into the query results where the

returned response should begin. It has default offset value is

0.

rows: It specifies the number of rows to be displayed at one

time.

fq: It filters query by applying an additional query to the

initial query’s caches the results.

wt: It selects a response writer for formatting the query

response.

Figure 5: Searching with classification stages [11]

Raw query: It contains basic string query like “all malls near

Rajiv chowk in Delhi”.

Classifier: It identify which part of query string as possibility

which part could mean geographical entity.

Validator: Validates all above classification.

Lookup: It acts like lucene index.

Tokenizer: It tokenizes queries into tokens or shingels

(query=all, malls, near, Rajiv, chowk , in , Delhi).

Bloom Filters: It is a very efficient data structure for doing

set membership. Indexed many item to bloom filters then

check for whether all item inside bloom filters validate all

classification. Probabilistic manner tell us the high degree of

probability [26].

Searching near a single point
Solr’s basic searching based upon a single point usually a

latitude and longitude. This implementation supports a simple

syntax for filtering based upon either a true circular radius or

based upon a square (which is faster to calculate) with sides

equal to the diameter of the true circular radius.

Defining the location fields
The first step in performing radius search is to create a field

type in schema.xml to contain geographical location:

Listing: Indexing location as latitude and longitude using

subFieldSuffix type[28]

The LatLonType class, used for this location field definition,

works for accepting a latitude/longitude pair in the form

latitude, longitude and ultimately splitting the two

coordinates and mapping them into separate fields. In order to

map the latitude and longitude into two separate fields under

the covers, those two fields will alose need to exist in the

schema.xml. Add the dynamic field that ends with the

subFieldSuffix specified in the fieldType definition :

Listing: Indexing location for geographical searching [12]

A dynamic field put in place for the location field to map the

latitude and longitude coordinates into separately. Now, send

all those documents into search engine that are left. Such in

this case listing below:

Listing: Indexing location for geographical searching [12]

<add>

 <doc>

 <field name=”id”>1</field>

 <field name=”location”>33.748,-84.391</field>

 <fieldname=”city”>Atlanta, GA</field>

 </doc>

 <doc>

 <field name=”id”>2</field>

 <field name=”location”>40.715,-74.007</field>

 <fieldname=”city”>New York, NY </field>

 </doc>

 <field name=”id”>3</field>

 <field name=”location”>37.775,-122.419</field>

 <fieldname=”city”>San Francisco, CA </field>

 </doc>

</add>

<fieldType> name=”location”class=”solr.LatLonType”

subFieldSuffix=”_coordinate” </fieldType>

<dynamicField name=”_coordinate” type=”tdouble”

indexed=”true” stored=”false” />

ACEIT Conference Proceeding 2016

IJCSIT-S116

Send the document to Solr by running the following

command:

Once documents are indexed in Solr, it’s then possible to

search upon location in various ways. It shows the search

result for text vision of location with a query such as city:

“New York, NY”. This search outside of the borders of the

city for which user are searching. This approach is

problematic thus to enhance it to geospatial search as

follows:-

Geography and Bounding Box Filters
Geographical searching is to query for all documents within a

specific distance of a given location. Solr contains a specific

query parser named geofilt that takes a latitude/longitude

coordinate, a location field and a maximum distance (in

kilometers) and matches only documents falling within the

geographical area specified.[27]The syntax for such a query

searching for a 20 kilometers radius from San Francisco, CA,

it would be as follows:

Figure 6: The Geographical area from which documents

would be returned from a geofilt query requesting a distance

of d=20km from the center of San Francisco, CA.[7]

To improve this location search Solr contains bbox(bounding

box) query parser, making it easy to substitute the two within

any geography filter:

Above performs a fast bounding box (bbox) filter to find

geographically close location and how to apply a more

accurate geofilt filter that will calculate distance for each

document inside a bounding box and filter out which reside in

radius range.

Solr sort the document by distance away or for calculated

distance to be returned with remaining fields.

Advance Geospatial search
The Solr project grew out of the first author’s experience

developing lucene [20]. We have discussed simple single

point geospatial search implementation. Solr upgraded to

more advanced implementation that supports indexing much

more single point per document. This advance feature added

arbitrary polygons (as opposed to just points) and it supports

indexing multiple points or shape per filed. If we search a

point location then it index a single document with multiple

latitude/longitude coordinates. At query time it return

relevant document.

V. PROPOSAL

This research discusses the spatial-aware search problem in

current spatial web portals and based on that, it proposes a

method to construct an intelligent search engine to improve

the search efficiency. Our approach is to explore the lucene

and Solr from spatial search point of view along with the

support of geo-ontologies.

A geo-ontology play a key role in spatially-aware search

engine, with regards to providing support for relevance

ranking, query expansion, query disambiguation and web

resource annotation. A geographical ontology is used to assist

spatial search on the Internet

VI. FUTURE WORK

The faceted search feature can be added to the spatial search

engine. Ranking can also be implemented in the search

engine.

Knowledge base can be added to the search engine using

geographical ontologies to enhance the accuracy of search

results and better understanding of search query. Another

feature that can be added is to re-search in the returned

results. Just like when we ask the search engine to show all

the cities near Lucknow having population greater than a

million, later we perform another search in the results

obtained from previous query to find cities among them who

are near Delhi have high literacy rates.

VII. RESULT

 cd $solr 4.10/examples-doc/

java –Drupl=http://localhost:8983/solr/geospatial/update –jar

post.jar documents/geospatial.xml

http://localhost:8983/solr/geospatial/select?q=*:*&

fq={!bbox sfield=location pt=37.775,-122.410 d=20} [21]

http://localhost:8983/solr/geospatial/select?=*:*&

fq={!geofilt sfield=location pt=”37.775,-122.419 d=20}

ACEIT Conference Proceeding 2016

IJCSIT-S117

http://localhost:8983/solr/geospatial/select?=*:*&

Figure 7: Component sizes in basic search setup

Above we are showing the basic resources used in search and

similarly we will enhance it in our future work.

We implemented a basic search for bounding box circle using

solr, lucene, geo-names api and google API. TIKA has been

used to gather information. Lucene has been used to index the

information specifically location (longitude ,latitude).

 Figure 7: Map showing bounding box circle for our search

VIII. CONCLUSION

Solr is the key solution to an intelligent search engine when

spatial data used with geographical ontology. They are

efficient, more accurate and optimal solution for kind of

spatial searching.

References

[1] Christopher B. Jones, Alia I. Abdelmoty, David

Finch, Gaihua Fu, Subodh Vaid,“The SPIRIT Spatial Search

Engine: Architecture, Ontologies and Spatial Indexing”

[2] Grant Ingersoll,” Location-aware search with

Apache Lucene and Solr”

[3] Gaihua Fu, Christopher B. Jones and Alia I.

Abdelmoty,” Building a Geographical Ontology for

Intelligent Spatial Search on the Web”

[4] Divakar Yadav,Sonia Sanchez-Cuadrado,Jorge

Morato, Juan Bautista Llorens Morillo,“An Approach for

Spatial Search Using SOLR”

[5] Yuqi Bai , Chongjun Yang , Donglin Liu , Lingling

Guo, “Spatial search engine – enabling the intelligent

geographic information retrieval”

[6] Wenwen Li, Chaowei Yang ,“A Semantic Search

Engine For Spatial Web Portals”

[7] Trey Grainger and Timothy Potter forward by Yonik

Seely,”Solr in Action”

[8] Video conference of Lucene/Solr revolution by

Lucidworks

[9] Presentation by th Climate Corporation presented of

FOSS4G 2014

[10] http://www.edureka.co/apache-solr

[11] Lucene/Solr Revolution by Ishan Chattopadhyay,

LucidWorks, www.lucenerevolution.org

[12] Trey Grainger and Timothy Potter forward by Yonik

Seely,”Solr in Action” ISBN 9781617291029

[13] Beng Chin Ooi, Ron Sacks-Davis, Jiawei Han,

“Indexing in spatial data”

[14] Video conference of Lucene/Solr revolution by

Lucidworks 2013

[15] http://www.worldwidewebsize.com/

[16] Sergey Brin, Lawrence Page, The Anatomy of a

Large-Scale Hypertextual Web Search Engine. Computer

Networks and ISDN Systems, 30(1-7), pp.107-117

[17] Steve Lawrence, C. Lee Giles, Searching the Web:

General and Scientific Information Access. IEEE

Communications, 37(1), pp.116-122

[18] Steve Lawrence, C. Lee Giles, Searching the World

Wide Web, Science, 280(5360), pp.98–100

[19] Location-aware search with Apache Lucene and

Solr, Combine unstructured text and spatial data to enhance

your search applications

[20] Rohit Khare, Doug Cutting, Kragen Sitaker, Adam

Rifkin, Nutch: A Flexible and Scalable Open-Source Web

Search Engine

[21] Trey Grainger and Timothy Potter forward by Yonik

Seely,”Solr in Action” ISBN 9781617291029

[22] Yuqi BAI a, Chongjun YANG a, Donglin LIUa,

Lingling GUOb –“SPATIAL SEARCH ENGINE –

ENABLING THE INTELLIGENT GEOGRAPHIC

INFORMATION RETRIEVAL”

[23] Sophiya.K, Sounderrajan.T - “Implements The

Spatial Inverted Indexes To Perform Quick Search”

[24] Apache Solr Reference Guide 4.10-“Covering

Apache Solr”

[25] Andrzej Białecki, Robert Muir, Grant Ingersoll -

“Apache Lucene 4”

[26] Lucene/Solr Revolution by Ishan Chattopadhyay,

LucidWorks, www.lucenerevolution.org

[27] Trey Grainger and Timothy Potter forward by Yonik

Seely,”Solr in Action” ISBN 9781617291029

[28] Apache Solr Reference Guide 5-“Covering Apache

Solr”

ACEIT Conference Proceeding 2016

IJCSIT-S118

