
Proposal for Avoiding Ambiguity in Requirement

Engineering using Artificial Intelligence
Shagun Sinha

1
, Mohd Shahid Husain

2

Dept. of Computer Sc. & Engg.

Integral University, Lucknow, India

Abstract- Ambiguity, the biggest problem in the Software

Development Life Cycle and this proposal is to introduce an idea

for avoiding the ambiguity during the time of Requirement

Elicitation. While developing software many a times it is not clear

that a particular word or the particular sentence has two or more

meanings and if we know, even then it is difficult to decide which

one is correct. Hence in this proposal I am sharing a concept of a

tool which can resolve this problem. This tool will be able to

identify the ambiguous words and provide all the possible

meanings of those ambiguous words clarifying the meaning of the

sentence. Amongst all the possible meanings of the ambiguous

words the elicitor can choose the appropriate word even after

discussing with the stake holder(s). Currently the artificial

intelligence is not so advanced that we can write the program

which can choose the correct meaning of those words itself. Human

involvement is required in this because the points in this process

are so important that we cannot rely completely on machines and

programs.

Keywords- Ambiguity, WordNet, Part-Of-Speech Tagger, TAAI.

I. INTRODUCTION

This proposal is an attempt to avoid the ambiguity during

requirement elicitation. Requirement Elicitation is very

important part of the software development life cycle. Every

phase of SDLC after requirement analysis depends upon

Requirement Elicitation[1]. Requirement Elicitation is the

process in which some information is collected, and this

information can be used for the development of the software.

The problem faced in this phase is the Ambiguity.

The collection of information is done through various sources

and stake holders are one of them. They are no programmers but

they are the one who are related to that organization or they

have knowledge about the organization for which we are

creating the software. Hence they are the big support in

gathering the information, but the problem is that many times it

is found that whatever is documented carries a large amount of

ambiguity. Hence the ultimate product is not what is expected

and not only that rectifying the error causes: wastage of time,

extra money and extra efforts to track down the error and make

changes.

 Ambiguity means that any sentence or word with more than

one meaning like the word „saw‟ it has several meanings like

„see‟, „cutting tool‟ and „cut‟, hence it is a ambiguous word. The

same way a sentence may also have two or more meanings like

“I saw a girl with a telescope” in this there are multiple meaning

of the sentence, one is that the girl was carrying the telescope

and another one is that the girl was seen through the telescope.

Hence, to avoid this we can use software to create a tool

which may help us find the possible ambiguous words and

correct them instantly. This may help the company to create

more accurate requirements with minimum ambiguity in them.

II. LITERATURE REVIEW

As we all know that Ambiguity is the major problem during

Requirement Elicitation. Hence, I am trying to create a concept

with the help of which this problem could be solved. In this tool

we need two software one for finding out all the possible

Interpretations of a word and another for finding out the Part of

Speech of the sentence provided by the Elicitor.

For finding out all possible interpretations we can use

WordNet 2.1 Software developed at Princeton University

Cognitive Science Lab by David Slomin and Randee Tengi.

For finding the Part of Speech of a sentence we can use

Stanford.NLP.POSTagger 3.5.2.1

We can merge both of these tools to create an ultimate tool

which can be used for avoiding the ambiguity.

The working of this tool is very simple, the elicitor will type

the information provided by the stakeholders each time we enter

a point. The system will send each word of that sentence one by

one to the WordNet tool which will find all the possible

interpretations (under two categories only Noun and Verb) of

that word and if the number of interpretations is more than one,

the WordNet will return all the interpretation related to that

work to our tool. Here at our tool the same point or sentence will

be sent to POS Tagger tool to find out, to which part of speech

the words in that sentence belong. And on the basis of the POS

the interpretations of each word will be listed under a particular

category (Noun and Verb) with that word. Now the Elicitor can

choose the particular word which he finds suitable for the

sentence after discussing about it with the stakeholders.

ACEIT Conference Proceeding 2016

IJCSIT-S65

After that if we find that we are satisfied with our work we can

further save it in the form of a DOC file.

A tool named Systemized Requirements Engineering

Environment (SREE) [2] was created to avoid the ambiguity in

the Requirement specification. In this tool the whole document

regarding the requirement was loaded and the tool identifies

most of the ambiguity in the requirement specification. SREE

searches for instances of potential ambiguity in its input,

concentrating on achieving a 100% recall rate and a precision

rate of as close as possible to 100%. The potential ambiguities

that SREE searches or are the ones whose indicators are listed in

SREE‟s ambiguity indicator corpus (AIC).

In this tool they are using Wordnet 3.0 to find out the

ambiguous. This tool also uses the part-of-speech tagger. For

documentation the elicitor must keep in mind the various rules

designed for elicitation to bring out the best result.

The result generated by SREE is the indication of

almost all the possible ambiguities present in the document.

Another tool named Ambiguity Detector [3] was developed. The

idea was very simple which does not require a large amount of

rules and techniques. The tool created has three major parts

Corpus, Part-of-Speech tagger and an algorithm to detect the

possible ambiguities in the document. Here, Corpus is the

collection of ambiguous words and phrases, Part-of-Speech

tagger is used to identify that what part of speech that word

belongs to and the algorithm is helping in identifying the

ambiguity with the help of Corpus and Part-of-Speech tagger

.the Part-of-Speech tagger helps in identifying the lexical/

syntactic/ syntax type of ambiguities. There are no specific rules

for gathering the requirement and the result provided by the tool

is with proper indication of ambiguous words. The found

ambiguous words are colour coded and their count is also

displayed.

And then Henrik Leopold, Fabian Pittke, and Jan Mendling [4]

worked together and tried to create a system which can

automatically detect and resolve the Lexical Ambiguity in

process models and their main target is the Homonyms and

Synonyms. For automatic analysis, lexical databases such as

WordNet [5], [6] are available, which capture various semantic

relationships in a structured way. A similar resource is the

BabelNet database [7], which combines WordNet senses with

the web encyclopedia Wikipedia and allows also multilingual

word sense retrieval and disambiguation.

 There is a very simple logic to detect Homonyms and

Synonyms. For identification of Homonyms, every word having

more than one sense as per the Wordnet software is considered

to be a homonym. Then the correct sense is selected and used in

the document. To identify Synonyms, the technique is to

consider pairs of words that have at least one meaning in

common. Those two words can be synonymous only if their

context is approximately identical.

III. PROPOSED METHODOLOGY

A space will be provided in the tool where we can type each

information and check for ambiguity after each point, remember

we are avoiding ambiguity instantly instead of wait for the work

of elicitation to finish

Figure 1Architecture of TAAI (Tool for Avoiding Ambiguity Instantly)

ACEIT Conference Proceeding 2016

IJCSIT-S66

 Enter the point in a space provided and then click a

button to check ambiguity.

 Then each word in that sentence will be used to find the

number of interpretations of a particular word in noun

and verb form using WordNet 2.1 which will work

with this tool.

 If the particular word‟s interpretation is more than one

then that word will be listed below with all the possible

interpretations.

 The interpretations of that word will be in a particular

order which will be based on P.O.S. (Part of Speech) of

that word. The ordering will be based on likelihood of

that word.

 The Elicitor can select the most appropriate word after

consulting it with the stakeholder.

 After selecting the correct interpretation of the words in

a point and the elicitor presses enter all the selected

interpretations will be displayed with their words in a

bracket and if the elicitor finds it correct he can add the

data to the DOC file.

Part of this system

 User Interface- In the interface there is a textbox to

type the points provided by the stakeholders. And right

below it is a button to check for the ambiguous words.

All the ambiguous words will be displayed below with

the senses in the dropdown list. Those senses will also

be arranged on the basis of that word being noun and

verb. After selecting the appropriate sense click on the

submit button to see the result. The result will be a

sentence with selected sense written in brackets with

the ambiguous words. In this way we will show the

correct sense of the sentence without changing the

sentence. If the elicitor and the stakeholder are satisfied

with the result that point will be then included in the

sentence.

 Software Required- Here, we can use WordNet 2.1[9]

to find out the sense of each word in that sentence on

the basis of noun and verb. But before doing that we

will try to find out the part of speech of each word

using Stanford.NLP.POSTagger 3.5.2.1.[10] This will

help in setting the priority of the senses extracted from

the WordNet 2.1, like if the word is used as a verb in

that sentence then verb related senses will be displayed

first and then the noun based one. All the senses will be

displayed in a dropdown list and from those we can

select the appropriate one to be displayed in the result.

 WordNet 2.1- WordNet is a large lexical database of

English. Nouns, verbs, adjectives and adverbs are

grouped into sets of cognitive synonyms (synsets), each

expressing a distinct concept. Synsets are interlinked

by means of conceptual-semantic and lexical relations.

The resulting network of meaningfully related words

and concepts can be navigated with the browser.

WordNet is also freely and publicly available for

download. WordNet's structure makes it a useful tool

for computational linguistics and natural language

processing.[11]

 POSTagger- A Part-Of-Speech Tagger (POS Tagger) is

a piece of software that reads text in some language

and assigns parts of speech to each word (and other

token), such as noun, verb, adjective, etc., although

generally computational applications use more fine-

grained POS tags like 'noun-plural'.[12], [13]

 TAAI (Tool for Avoiding Ambiguity Instantly)- This

tool is combined with two different software one to

find the sense of the given word and another to find the

part of speech using their APIs. The software which

provides the senses has every possible sense stored in it

which on search will be sent to the tool. The software

which we are using to find the part of speech is capable

of finding the possible correct part of speech in a

sentence and after processing the result will be sent to

tool. Then this tool will sent the ambiguous word with

the part of speech to the software to search for the

senses on the basis of its part of speech. Then the result

will be displayed in TAAI in a dropdown list.

IV. CONCLUSION

We know that Ambiguity is the major problem in requirement

elicitation but still it is a problem which does have a solution.

The above discussed method if developed can solve this

problem because the above mentioned technologies are

available and can be brought together to use it in salving our

problem.

Using this method we can convert ambiguous sentences into

lucid sentence. This technique may reduce the misinterpretations

due to which the whole project suffers. This tool‟s result will be

displayed old sentence with the correct meaning of the

ambiguous words in the braces. In this way the stakeholder will

not be able to accuse anyone for fudging the results.

So, in the future this tool is going to be very important in

software/web development process saving huge amount of

money and time. Not only this, it can be developed for various

languages[15].

REFERENCES

[1] Husain M. Shahid, M. R. Beg, “Word sense ambiguity: A survey” in
International journal of computer and information technology (IJCIT),

2(6), PP. 1161-1168, 2013.
[2] Sri Fatimah Tjong, “Avoiding Ambiguity in Requirements Specifications”.

Thesis submitted to the University of Nottingham for the degree of Doctor

of Philosophy, February, 2008.
[3] Neeraj Arya, Ayan Nigam, Deepika Jain, Bhawna Nigam, “Tool for

Automatic Discovery of Ambiguity in Requirements”, International

Journal of Computer Science (IJCSI), 9(5), No 2, 2012

ACEIT Conference Proceeding 2016

IJCSIT-S67

[4] Fabian Pittke, Henrik Leopold, Jan Mendling, “Automatic Detection and

Resolution of Lexical Ambiguity in Process Models”. DOI
10.1109/TSE.2015.2396895, IEEE Transactions on Software Engineering,

2015.

[5] G. A. Miller , “WordNet: a Lexical Database for English”,
Communications of the ACM, 38(11), PP. 39–41, 1995.

[6] G. Miller and C. Fellbaum, “WordNet: An Electronic Lexical Database”,

Cambridge, MA: MIT Press, 1998.
[7] R. Navigli and S. P. Ponzetto, “Multilingual. WSD with just a few lines of

code: the BabelNet API” in ACL System Demonstrations, pp. 67–72,

2012.
[8] Ben Kovitz, “Ambiguity and What to Do about It” Proceedings of the

IEEE Joint International Conference on Requirements Engineering

(RE‟02) 1090-705X/02, 2002.
[9] Wordnet Software can be downloaded from this link

https://wordnet.princeton.edu/wordnet/download/current-version/

[10] Part-of-Speech tagger the source code can be found at https://sergey-
tihon.github.io/Stanford.NLP.NET/StanfordPOSTagger.html

[11] https://wordnet.princeton.edu/

[12] Kristina Toutanova, Christopher D. Manning, “Enriching the Knowledge
Sources Used in a Maximum Entropy Part-of-Speech Tagger” in

Proceedings of the Joint SIGDAT Conference on Empirical Methods in

Natural Language Processing and Very Large Corpora (EMNLP/VLC-
2000), PP. 63-70, 2000 .

[13] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer,

“Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency
Network” in Proceedings of HLT-NAACL 2003, PP. 252-259, 2003.

[14] Husain M. Shahid, M. R. Beg, “Advances in ambiguity less NL SRS: A
review” in the proceeding of IEEE International conference on engineering

and technology (ICETECH), PP. 221-225, 2015.

[15] Husain M. Shahid, Preeti, Yadav, “Study Hindi word sense disambiguation
based on Hindi WordNet” in International journal for research in applied

science and engineering technology, 2(5), PP. 390-395, 2014.

ACEIT Conference Proceeding 2016

IJCSIT-S68

