Sleep Disorder Recognition using Wearable Sensor and Raspberry Pi

Vinay Kumar Chandna¹, Sagar Narang², Yash Bansal³
Senior member, IEEE Prof. and Head Electrical Final Year, MAIT Delhi
JSS Academy of Technical Education Final Year, MAIT Delhi

Abstract- Sleep analysis is usually done inside a sleep laboratory under close supervision of doctors with the help of cardiac rhythm using electrocardiography (ECG), breathing patterns, brain activities using electro encephalography (EEG), eye movement using electrooculography (EOG) and muscle activity during sleep. The data collected through these devices is thus utilized for further analysis and has uncertainty and noise. In this paper, a novel approach for sleep analysis is discussed with Raspberry Pi. Sample data is collected during night with the sensor attached to the patient’s pillow and observations are made during various sleep stages. The data is also utilized for the calculation of sleep efficiency that is further divided into awake, light sleep and deep sleep percentage as shown by the hypnogram. This methodology helps us in easy analysis of quality of sleep and calculation of sleep debt. The methodology is useful for the patients who are unable to go to the hospital.

Index Terms— Accelerometer, ECG, EEG, Gyroscope, NREM sleep, Raspberry Pi, REM sleep, Sleep Analysis, Sleep Debt, Sleep Apnea ,Sleep disorder, Wearable sensor.

I. INTRODUCTION

Sleep is an essential natural activity that is useful to avoid fatigue, stress and keeps people healthy. One fourth of a life time is spent sleeping, approximated to 2,500 hours per year. Lack of sleep can affect the memory, immune system, cognitive functioning, learning abilities, and alertness and thus lead to poor work performance of an individual. Furthermore, researchers have found correlations between sleeplessness and certain diseases, such as heart disease and diabetes. [1]

There are several technologies made by the researchers for monitoring human sleep. Some of them require an artificial stimulated environment where in a patient is analyzed under several factors, for instance, cardiac rhythm using electrocardiography [ECG], breathing patterns, brain activities electroencephalography [EEG], eye movement electrooculography [EOG] and muscle activity during human sleep. These techniques are based on physiological signals from the human body [9]. However with as many as 55 sensors on a human body, the natural sleeping patterns of the patient is disturbed. Some of the methods are based on the patient’s medical history and surveys. Thus, there is a need of an efficient way to remotely monitor human sleep in a natural environment. [4]

The normal human sleep is broadly categorized as:
1. Rapid eye movement (REM sleep) [3]
2. Non-Rapid eye movement (NREM or non-REM sleep).

Each type of these categories have distinctive set of physiological and neurological characteristics associated with it. Fig.1 shows the typical hypnogram that shows the average human sleep cycle with various stages viz. awake, REM, light, medium, deep and very deep[2]. The characteristics of the human sleep cycle is as shown in table-I.

<table>
<thead>
<tr>
<th>Table-I: Typical characteristics of the common human sleep stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep Stages</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Awake</td>
</tr>
<tr>
<td>REM Sleep</td>
</tr>
<tr>
<td>Light non-REM Sleep</td>
</tr>
<tr>
<td>Deep non-REM Sleep</td>
</tr>
</tbody>
</table>

The above table depicts various sleep stages in a human sleep cycle with their characteristic behaviors.

Fig.1. A typical Hypnogram representing various sleep cycles of a 7 hour sleep.

The recent innovations in technology has enabled us to decrease the size of the embedded devices with increased processing speed. To reduce stress, sound sleep is essential. Thus, making it necessary to monitor the sleep with the help of motion sensors. This paper aims at discussing a novel approach for the analysis of sleep disorder in a setup, at the patient’s premises with the help of wearable sensor and Raspberry Pi. Sample data is collected throughout the
night with the sensor attached to the patient’s pillow and observations are made. The data is also utilized for the calculation of sleep efficiency that is further categorized into awake, light sleep and deep sleep percentage.

In our study of sleep disorder, we collected 20-days subjective sleep-movement data which is considered as a parameter for sleep efficiency calculation. Then, efficiency report was prepared and further investigating if the data would allow us to recognize whether the patient suffered from sleep disorders or not. The Sleep Analysis Algorithm is based on the hypothesis that quality of sleep is directly related to the motion of patient during the sleep [10].

Sleep study and analysis has a lot of applications. Some serious ailments related to human sleep are as follows:
2. Sleep-related movement disorders: Restless Legs Syndrome (RLS), Periodic limb movement disorder
3. Sleep-related seizure disorders.
5. Sleep-related night-time behaviors: Sleepwalking, Night Terrors, or bed-wetting.

II. SLEEP ANALYSIS ALGORITHM

Data Collection:
The Raspberry Pi in combination with the gyroscope and accelerometer collects data from the motion of the patient. The motion sensor is attached to the pillow or the mattress of the sleeping person under observation. It gathers movement data throughout the course of sleep. The data collected during typical human sleeping cycles is stored on a cloud database using engineering station through a data highway.

Data Processing:
Precision tracking of both moderate and minuscule level motion is performed on the Operator machine. The output range of the wearable motion sensor (±1000) is transformed to an appropriate scale for computation. The sensor collects data on the 3-dimensional axis and the reading of these individual axis is saved in to the database. The x, y, z axis values are intelligently analyzed and assimilated into a single float point entity using generalized mean. The algorithm classifies the sleep on the basis of degree of motion.

\[\mu = \text{Single float-point entity} \]

![Fig.3. Assimilation of 3-dimensional axis reading into a single float point entity (µ) using generalized mean.]

Data Classification:
Based on the motion of the patient, the output values of the gyroscope are segregated into the following categories [7]:
1. Awake: Wakefulness is an everyday recurring state of consciousness in which a human being is conscious and engages in clear cognitive behavioral responses to the external world.
2. Light Sleep: Lasting from 10 to 25 minutes, this is the first stage of factual sleep. The eye movement stops, heart rate slows, and body temperature decreases. About 70 to 90 minutes after falling asleep, humans enter REM sleep. The eyes move speedily, the heart rate and blood pressure increases and breathing patterns shallows. In this category, there is occasional muscle twitching.
3. Deep Sleep: Sleep is a naturally recurrent state characterized by altered consciousness, inhibition of nearly all voluntary muscles and relatively inhibited sensory activity. It is differentiated from category-2 by a decreased ability to react to stimuli.

Data Aggregation:
The float point value (µ) is separated into its respective sleep categories (Awake, Light Sleep and Deep Sleep). These results are fed into the data operator for result formation, efficiency calculation and sleep disorder recognition.

Data Analysis:
Intelligent Algorithm
Variables Used:
1. \(X = \text{Y-axis reading} \)
2. \(Y = \text{Y-axis reading} \)
3. \(Z = \text{Z-axis reading} \)
4. \(\text{th1}=\text{Deep Sleep Motion Threshold} \)
5. \(\text{th2}=\text{Light Sleep Motion Threshold} \)
6. \(\beta_1 = \text{Sleep_type_deep} \)
7. $\beta_2 = \text{Sleep_type_light}$
8. $\beta_3 = \text{Sleep_type_awake}$
9. $\alpha = \text{Total value count}$
10. $\text{TST} = \text{Total sleeping time}$
11. $\text{TRT} = \text{Total recording time}$

$$\mu = \frac{1}{T} \left(\sum (x^2 - y^2 - z^2) \right)$$

if ($\mu > 0$ or $\mu <= \text{th1}$)

$\beta_1 = \text{"DEEP SLEEP"}$

else if ($\mu > \text{th1}$ or $\mu <= \text{th2}$)

$\beta_2 = \text{"LIGHT SLEEP"}$

else if ($\mu > \text{th2}$)

$\beta_3 = \text{"AWAKE"}$

The ratio between the total sleep time (TST) and the total recording time, or TRT, is called the sleep efficiency.

Total sleep efficiency = $\frac{\text{TST}}{\text{TRT}} \times 100$

Deep sleep efficiency = $\frac{\beta_1}{\alpha} \times 100$

Light sleep efficiency = $\frac{\beta_2}{\mu} \times 100$

Data Reporting:
Data was collected over a period of twenty nights and it was represented as a graph (Movement VS Time) for each night. The graphs represent motion of the patient during the night with respect to time, which is known as Hypnogram [8]. It graphically depicts the stages of sleep during the course of each night. After efficiency calculation for each night, a sleep disorder report for the patient was generated. The final report displays quantitative comparison among the each day sleep efficiency for the patient.

III. HARDWARE AND SOFTWARE DESCRIPTION

The Raspberry Pi B+ is a credit card-sized single-board computer, developed by the Raspberry Pi Foundation. Linux is the primary operating system supported by Raspberry Pi. The MPU-6050 is a 6-axis Motion tracking device consuming low power and providing high performance requirements of wearable sensors. The MPU-6050 sensor combines a 3-axis gyroscope and a 3-axis accelerometer on the same silicon die with an integrated Digital Motion Processor (DMP).

The sleep disorder analysis system uses Python for software code, R for statistical analysis and graphic sketching, and SQLite3 as a database. R is programming language and software environment for statistical computing and graphics. The architecture stack for the system has been shown in figure 6.

The system constraints of the sleep disorder analysis system have been enumerated below:
1. System Power specification : Micro USB socket 5V, 2A
2. System CPU specification: 700 MHz Low Power ARM117
3. System Memory specification: 512 SDRAM
4. Wearable Sensor full scale range: ±1000
5. Wearable Sensor power supply range: ±2.375V-3.46 V

IV. RESULT AND ANALYSIS

The algorithm is implemented using the specified hardware and software system. The experiments were conducted for ten patients over a period of same twenty night. The Efficiency readings for each patient is computed...
using the above algorithm. The Hypnogram (Time v/s Movement graph), as shown in Fig.7 is plotted using a single night data for a patient (Day 1) [8]. The efficiency table (Table-II) stores the computed efficiency of the 5 patients over a period of 20 days.

![Hypnogram](image)

Fig.7. Hypnogram depicting sleep effectiveness for every hour.

<table>
<thead>
<tr>
<th>Day No.</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Patient 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79.85437</td>
<td>59.2815</td>
<td>55.1256</td>
<td>76.98767</td>
<td>35.1625</td>
</tr>
<tr>
<td>2</td>
<td>61.98531</td>
<td>64.83051</td>
<td>65.14629</td>
<td>78.98786</td>
<td>45.1565</td>
</tr>
<tr>
<td>3</td>
<td>69.57602</td>
<td>57.29577</td>
<td>58.4621</td>
<td>79.98769</td>
<td>54.63214</td>
</tr>
<tr>
<td>4</td>
<td>67.82065</td>
<td>63.97173</td>
<td>70.46132</td>
<td>74.5469</td>
<td>45.32555</td>
</tr>
<tr>
<td>5</td>
<td>58.21636</td>
<td>67.53699</td>
<td>50.16495</td>
<td>82.8754</td>
<td>50.4158</td>
</tr>
<tr>
<td>6</td>
<td>54.0575</td>
<td>71.21418</td>
<td>80.7652</td>
<td>81.9097</td>
<td>60.6316</td>
</tr>
<tr>
<td>7</td>
<td>57.81651</td>
<td>75.92418</td>
<td>60.73156</td>
<td>78.8954</td>
<td>52.6425</td>
</tr>
<tr>
<td>8</td>
<td>64.90366</td>
<td>73.497365</td>
<td>75.13246</td>
<td>75.7656</td>
<td>54.79624</td>
</tr>
<tr>
<td>9</td>
<td>69.80144</td>
<td>74.498265</td>
<td>45.1326</td>
<td>83.8754</td>
<td>59.43258</td>
</tr>
<tr>
<td>10</td>
<td>67.53622</td>
<td>78.65119</td>
<td>87.9809</td>
<td>85.9876</td>
<td>65.1254</td>
</tr>
<tr>
<td>11</td>
<td>70.56842</td>
<td>80.31279</td>
<td>68.8754</td>
<td>87.76557</td>
<td>57.6421</td>
</tr>
<tr>
<td>12</td>
<td>71.83502</td>
<td>80.24959</td>
<td>72.9876</td>
<td>67.9878</td>
<td>61.26547</td>
</tr>
<tr>
<td>13</td>
<td>76.83408</td>
<td>84.458764</td>
<td>85.09876</td>
<td>90.87986</td>
<td>68.13264</td>
</tr>
<tr>
<td>14</td>
<td>81.379</td>
<td>83.210358</td>
<td>88.90876</td>
<td>87.6568</td>
<td>63.1626</td>
</tr>
<tr>
<td>15</td>
<td>76.88331</td>
<td>88.536811</td>
<td>76.98769</td>
<td>85.76789</td>
<td>66.1254</td>
</tr>
<tr>
<td>16</td>
<td>77.83654</td>
<td>91.773326</td>
<td>62.9876</td>
<td>88.8712</td>
<td>60.1325</td>
</tr>
<tr>
<td>17</td>
<td>83.50288</td>
<td>95.47698</td>
<td>81.98765</td>
<td>90.0981</td>
<td>60.1546</td>
</tr>
<tr>
<td>18</td>
<td>84.5308</td>
<td>93.452104</td>
<td>82.09876</td>
<td>91.1299</td>
<td>68.84236</td>
</tr>
<tr>
<td>19</td>
<td>82.88351</td>
<td>92.86735</td>
<td>69.09876</td>
<td>94.5429</td>
<td>67.1265</td>
</tr>
<tr>
<td>20</td>
<td>83.9345</td>
<td>94.86735</td>
<td>53.0975</td>
<td>95.43256</td>
<td>64.13654</td>
</tr>
</tbody>
</table>

The next step would be analyzing the efficiency report of each patient and comparing them to other patients. Two types of analysis were done here:

1. Qualitative Analysis: The sleep efficiency gives us the quality of the sleep the patient is getting. Now, on carefully analyzing Fig.7, Patient ID 3 and Patient ID 8 have the maximum discrepancy in their efficiencies.

 ![Boxplot](image)

Fig.7. Boxplot comparing the sleep efficiency of 10 patients (Qualitative Analysis)

2. Quantitative Analysis: Effective number of sleeping hours were calculated using the following formula:

 \[
 \text{Effective Sleeping Hours} = \frac{\text{Sleep Efficiency} \times \text{Total Recording Time}}{100}
 \]

 ![Boxplot](image)

Fig.8. Boxplot comparing the Effective Sleeping hours of 10 patients (Quantitative Analysis)

Analyzing Fig 8 quantitatively, Patient ID 9 and Patient ID 8 have the minimum average Effective sleeping hours.

V. CONCLUSION

The above sections shows two types of analysis done on patients for sleep disorder recognition. The qualitative analysis shows that Patient ID 3 and Patient ID 8 have the maximum discrepancy in their efficiency thus concluding that they have a very erratic quality of sleep.

The qualitative analysis shows that out of all the patients Patient ID 8 and Patient 9 were getting below average number of hours of sleep.

Thus, combining the results from both the analysis, it can be concluded that Patient ID 8 has confirmed sleep disorder and Patient ID 3 and Patient 9 have high risk of developing a sleep disorder.

Although these results are preliminary with limited number of participants, it revealed an effective technology for the analysis of sleep disorder with the help of wearable sensor and Raspberry Pi. While, the paper discuss the methodology for the calculation of sleep efficiency that is much more effective and can be used in a real time environment for detection of sleep disorder. With more extensive data and patient base from real time environment, people will soon be able to investigate their sleeping deficiency times and quality of sleep.
REFERENCES

