License Plate Recognition for High Security Registration Plates: A Review

Siddhartha Choubey¹, Anshuman Rai²
¹Associate Professor, Computer Science and Engineering, Shree Shankaracharya Technical Campus, Bhilai, India
²Pro-term Lecturer, Computer Science and Engineering, Shree Shankaracharya Technical Campus, Bhilai, India

Abstract—Traffic management and security issues have become all pervasive in today’s environment. In order to regulate traffic it is necessary to identify vehicles with their registration plates. Vehicle license plate recognition technology has helped in vehicle identification, theft prevention, speed regulation, and various other traffic management concerns. With the introduction of high security registration plates in India, various security measures will be improved. We present a survey of various techniques for vehicle license plate detection and recognition.

Keywords—License Plate Recognition, License Plate Detection, High Security Registration Plate.

I. INTRODUCTION

License Plate Recognition (LPR) technology has been used to uniquely identify vehicles. Vehicle License Plate registration plates are assigned by the regional transport office to uniquely identify a vehicle after the vehicle has been registered with the regional office[1]. This helps in identifying the owner of the vehicle, insurance information and other. The new high security registration plate (HSRP) offers security features like a hot stamped chromium based hologram, ingressed IND legend, laser etched 9-digit code, snap lock, security inscript, embossed borders and alphanumeric, and superior grade reflective sheeting. It also has a height, thickness and separation of characters.

Fig1. shows the schematic of an HSRP.

II. LICENSE PLATE RECOGNITION SYSTEM

A License Plate Recognition System can be thought of as composed of three phases [2]

1. LP Detection: LP Detection is the detection of the license plate within the input image. Various Methods have been identified for license plate detection Binary Image Processing, Gray Level Processing, Color Processing and Classifiers [2].

2. Character Segmentation: After license plate detection, individual characters are extracted. This phase extracts individual characters from the license plates. Various techniques like binary image processing, gray level processing, histogram processing, local adaptative thesholding and transformation [2] have been developed.

3. Character Recognition: After characters have been segmented individual characters can be recognized by various techniques like classifiers, template matching [2].

Fig 2. shows the schematic of a license plate recognition system.

III. RELATED RESEARCH WORK

A variety of research work has been done on license plate recognition system. Most can be classified as differing on the plate detection method, character segmentation methods and the character recognition methods.

In [3] License Plates are localized by firstly pre-processing which includes rgb to gray,edge detection and noise reduction following which possibly license plates are identified by changes in contrast, width by height factor. Character segmentation is done by looking for similarities in characteristics of characters. Character recognition is done with the help of ANNs.

In [4] the authors have the authors have presented a system that uses frequency domain filter, the Mexican hat operator filter and the spatial filter for image enhancement to improve results of an LPR system for high security registration plates.

In [5] The authors have used the basic morphological operations of skeleton, end points and thinning of binary images along with a standard LPR system. For recognition
of characters, three features of characters - holes, junctions, and endpoints are used. The proposed method claims to achieve a success rate of 100%.

In [6] the authors have illustrated a comparison between various techniques for license plate localization like block based techniques, Otsu, and state of the art. For character recognition the methodology is based on fuzzy clustering and neural networks.

In [7] a new method of block based ANPR system is presented for recognition of Indian License plates. The methodology consists of image pre-processing which consists of gray processing, image enhancement, filtering, binerization, thresholding and morphological operations – image erosion, removing small objects, image filling. Further character segmentation is performed which consists of Connected Component Analysis, Center Line Rule and Blob Extraction. Finally block based character recognition is performed using sub-plates of block based feature extraction and recognition. The authors claim to achieve a very high recognition rate of 98.2% and a speedup of processing time to 3.3 ms. The system is also very robust.

In [8] the authors present a method which uses improved segmentation along with OCR to recognize vehicle license plates. In this work LP extraction is done using either an estimate of plate location or image segmentation methods like image binarization, otsu’s method or color segmentation. Improvement of segmentation of characters is done by calculating components, extracting each character and cropping individual characters. Finally OCR is used to recognize characters.

In [9] a novel technique of multi-thresholding combined with neural networks has been adopted for LPR which helps in achieving a higher recognition rate. Multi-thresholding is a powerful technique for image segmentation. This is based on the assumption that an object and background pixels in an image can be distinguished by their gray-levels or color values. According to the authors previous techniques using otsu method achieved 96.64% recognition rate while multi thresholding technique has achieved a much improved recognition rate of 98.4%.

In [10] the authors have proposed a method for implementing ALPR using Speed up Robust Feature matching (SURF) technique for plate detection and Advanced Radial Basis Function (RBF) for matching characters.

Overall the algorithm seems to outperform previous work in terms of recognition rate and computation time. It achieves the following rates

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>License plate isolation</td>
<td>100%</td>
</tr>
<tr>
<td>License plate recognition</td>
<td>94.1%</td>
</tr>
<tr>
<td>Character recognition</td>
<td>99.15%</td>
</tr>
</tbody>
</table>

In [12] authors use different wavelets for license plate detection and feature extraction of license plate characters. Using different wavelets shape features of license plate characters are extracted and analysis of wavelets is done on the basis of recognition rate and time. It is found out that bior 3.9 has the highest recognition rate of 91.5%. Haar wavelet requires the least time.

In [13] the authors have used Gaussian Hermite Moments and Waves for calculation of features of characters. These features are then used as input to neural networks for character recognition. The recognition rate of the system is 97.6%. The authors compare recognition rate between PCA (Principal Component Analysis), MI (Moment Invariants) and the proposed work to show that PCA achieves 95%, MI achieves 96% while Gaussian Hermite moments with Waves achieves 97.6%.

In [14] the authors present an approach distinguished by digit recognition performed by feed forward back propagation neural network, trained with four angle Radon transform of sample letters and numbers. The proposed algorithm is able to recognize correctly characters on license plate with probability of 94.1%. The system was tested on 51 plate images including old type license plates; the recognition rate of 357 character strings was 99.15%. For the 51 images the outcomes were as follows

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>License plate isolation</td>
<td>100%</td>
</tr>
<tr>
<td>License plate recognition</td>
<td>94.1%</td>
</tr>
<tr>
<td>Character recognition</td>
<td>99.1%</td>
</tr>
</tbody>
</table>

In [15] an LPR system is developed which recognizes characters using OCR inside the framework of LABView software. The system has been tested for vehicles containing different number plates for different states. In the process of final evaluation after optimizing the final parameters like brightness, contrast, and gamma, adjustments, optimum values for light and angle from which the image is taken, the system achieves an overall efficiency of 98%.

In [16] authors present a new methodology for image segmentation and character recognition from standard Indian number plates. (Choubey & Sinha, 2011). This method differentiates between the characters on the basis of the difference between the characters on the basis of the difference in pixel distribution density in different regions of the alphabets and numeric characters. It first recognize character is belong to which group using euler technique and which subgroup does the input belong to and then tries recognize the input by comparing the input with the critical regions that differentiate among the elements of the same subgroup. This method eliminates the problem of confusion between similar looking elements like C, G and T, I, J by exploiting the small but important differences between them. Initial experiments have shown success in differentiating between similar looking characters. It is not
very successful on non standard characters and when skewness is present in license plates. In [17] the author has presented character recognition using two neural networks, one is Back Propogation Neural Network and the other one is Learning Vector Quantization Neural Network (LVQNN). It is observed that character recognition results obtained using Learning Vector Quantization Neural Network is better than those obtained by using Back Propogation Neural Network. The efficiency of the system can be further improved by increasing the number of fonts for training the neural network.

In [18] the authors have proposed a novel method of License plate localization based on morphological operations on a preprocessed, edge image yielded by a PCNN. Then connected component analysis follows to get some candidate regions which probably contain the license plate. Finally horizontal and vertical projections are used to carry work on each candidate region for an accurate plate extraction. The PCNN has the property that neurons that are close to each other pulse at the same time. The algorithm has been tested on database of RGB natural scenes containing 100 natural samples in which 10 images with noise are contained. The algorithm is implemented in Matlab and an accuracy of 92% is obtained.

In [19] a system is described that can recognize vehicle license plate under poor environmental condition using neural network. The various phases are 1. Image acquisition : images of various vehicles have been acquired manually and then by cropping the license plate. 2. Segmentation : Segmentation of gray scale image generated by finding edges using the Sobel filter for smoothing images is used to reduce the number of connected components and then bwlabel is used to calculate the connected components, finally a single character is detected.3. Recognition : Recognition is done using an ANN. In general if the characters are large in size the system achieves 100 % accuracy, however with others the system might achieve sub-optimal accuracy.

In [20] the authors discuss a method to recognize license plates through image fusion, neural networks, and threshold techniques.

In the proposed methodology license plate extraction is done using thresholding technique while recognition is done using neural networks. The LPR system was designed using MATLAB 6.5. The structure of neural networks includes input layers with 366 inputs, one hidden layer with 50 neurons and output layer with 46 neurons. Some noise is added to the input images. A recognition rate of 95 % is achieved in the presense of noise with 50% density.

IV. CONCLUSION
We would like to summarize the results of the survey in the form of a table showing various techniques used for detection, segmentation, and recognition

<table>
<thead>
<tr>
<th>Ref</th>
<th>Plate Detection</th>
<th>Character Segmentation</th>
<th>Character Recognition</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3]</td>
<td>Changes in contrast, width by height factor</td>
<td>Character characteristics similarities</td>
<td>ANN</td>
<td>93.7%</td>
</tr>
<tr>
<td>[6]</td>
<td>Block based, otsu, state of the art</td>
<td>Connected Component Analysis</td>
<td>Block based ANN</td>
<td>98.2%</td>
</tr>
<tr>
<td>[7]</td>
<td>Edge detection, morphological operations</td>
<td>Connected Component Analysis</td>
<td>Optical Character Recognition</td>
<td>93%</td>
</tr>
<tr>
<td>[8]</td>
<td>Estimate of plate location or image segmentation</td>
<td>Component analysis</td>
<td>98.4%</td>
<td></td>
</tr>
<tr>
<td>[9]</td>
<td>Multi-thresholding</td>
<td>Blob-extraction</td>
<td>Radial Basis Function ANN</td>
<td>95%</td>
</tr>
<tr>
<td>[10]</td>
<td>SURF</td>
<td>Morphological operations and Connected Component Analysis</td>
<td>Gaussian Hermite Moments and Wavelets and ANNs</td>
<td>97.6%</td>
</tr>
<tr>
<td>[11]</td>
<td>Edge Detection, Morphological operation, radon transform</td>
<td>Peak to valley method and statistical parameters of license plate</td>
<td>Wavelets, ANN</td>
<td>94.4%</td>
</tr>
<tr>
<td>[12]</td>
<td>Edge detection, Wavelets</td>
<td>Connected Component Analysis</td>
<td>94.1%</td>
<td></td>
</tr>
<tr>
<td>[13]</td>
<td>-</td>
<td>Connected Component Analysis</td>
<td>ANN with four angle Radon Transform</td>
<td>98%</td>
</tr>
<tr>
<td>[14]</td>
<td>Edge detection, Morphological operations, Connected Component Analysis & otsu</td>
<td>Connected Component Analysis</td>
<td>Optical Character Recognition</td>
<td>99.4%</td>
</tr>
</tbody>
</table>

www.ijcsit.com
REFERENCES

