Automatic Toll Collection by Using QR Code Capturing

Shital Y. Gaikwad
Asst. Prof. (B.E. M.Tech.)
Dept. of Computer Science and Engg.
Matoshri Pratishthan Group of Institutions
Vishnupuri, Nanded. (M.S.), India.

Chandrakant S. Audhutwar
Student (B.E.)
Dept. of Computer Science and Engg.
Matoshri Pratishthan Group of Institutions
Vishnupuri, Nanded. (M.S.), India.

Abstract- An embedded system based on the quick response code, camera and application program is developed for toll collection and crime investigation. Capturing QR code by using camera and recognise it. When camera capturing the QR code automatically the barrier is open and if the QR code is correct means that person's number plate is authenticate. After recognise the string from QR code it will perform the task of transaction. The amount of toll tax reduced from account number registered with vehicle at the time of vehicle registration, if the vehicle is unauthorised that time message sent to RTO.

Keywords- QR code, Camera, Application program, VB.net.

INTRODUCTION

To avoid the limitation of present QR code algorithms which are only available on the paper presswork, proposed an algorithm based on Pattern Recognition to realize the identification of the QR codes printed on various materials with different models. The QR codes from the sample images were manually marked first, and then the input images were divided into blocks. For every single block, its MRH and LBP features were calculated and such texture patterns were trained to obtain a QR code identifier using the Spatial Boost algorithm. For real-time identification, this identifier could divide the real-time input images, and output the classified results of the blocks, considering the texture features (MRH, LBP) of the blocks as input vectors. The blocks confirmed to be 2D barcode were combined into QR codes. The QR codes identifier obtained by the last training reached a 100% rate of detection in the test database of the experiment. With the rapid advances in mobile communication technologies, QR code in the embedded camera devices has been used as new input interfaces. However, the previous works for extracting QR code from an image do not consider a non-uniform background. In this paper, we implement the applications of QR code and propose an efficient algorithm to extract QR code from the non-uniform background. In contrast with prior works, our approach is of higher accuracy for QR-code recognition and more practical for use in a mobile information environment. Proposes a system for decorating QR code, the most popular two-dimensional barcode in Japan, with a facial image by Interactive Evolutionary Computation (IEC). QR code uses Reed-Solomon code which has error correction function, so a few images can be put on some appropriate positions of the code without damaging the implanted information; however it is hard to find such appropriate positions because they depend on QR code instances and images. The proposed system allows a user to capture his/her facial image with ease, to encode a sentence into a QR code, and to find good positions for the facial image on the code. Furthermore, the proposed system enables the user to choose the most desired design by iteratively selecting candidates the system displays. A simple experiment has shown that the proposed system makes a QR code decorated with a facial image within 10 to 20 minutes involving the time when a user thinks the implanted message and chooses a color. QR codes seem to appear everywhere these days. We can see them on posters, magazine ads, websites, product packaging and so on. Using the QR codes is one of the most intriguing ways of digitally connecting consumers to the internet via mobile phones since the mobile phones have become a basic necessity thing of everyone. A methodology for creating QR codes by which the users enter text into a web browser and get the QR code generated. Drupal module was used in conjunction with the popular libqrencode C library to develop user interface on the web browser and encode data in a QR Code symbol. The experiment was conducted using single and multiple lines of text in both English and Thai languages. The result shows that all QR encoding outputs were successfully and correctly generated.

In order to improve the practical application property of the two-dimensional barcode Quick Response (QR) code, we investigate the coding and decoding process of the QR code image. Run-length coding is applied to binary QR code image so as to accelerate the identification of QR code image. The QR code is transformed into many runs of data in alternate pixels of black and white. The related runs of data among adjacent rows are formed a unit module. After the whole image has been scanned, all of such modules in binary QR code image can be generated accordingly. With a noisy QR image captured by an industrial camera as an example, the experiments of image linearization, image seeking and localization adjustment are accomplished in sequence. A decoding system of QR code is designed and the online detection experiments are carried out. The satisfied results are achieved.

QR Codes offer a number of benefits over traditional barcodes that increase their flexibility, reliability and their ease of use. When you combine these benefits, it also
results in a reduced cost of implementation which has help
drive their popularity. To name only a few of these benefits:
- High Capacity
- Require Less Space
- Dirt And Damage Resistant
- Readable From Any Direction
- Structured Appending

Chances are you’ve passed a QR Code or come into contact
with one, possibly without noticing. So what are they?
They are barcodes, very similar to the barcodes you’ve seen
on almost every product you’ve bought for many years. The
main different between QR Codes and traditional barcodes,
is that QR Codes can store many times more data in a much
smaller area due to their ability to store data in 2
dimensions rather than 1.
The QR Code is a type of two-dimensional barcode that is
used to store small amounts of text or data. Different sizes
and error correction levels of QR barcodes exist to store
differing amounts of data with a selectable amount of
redundancy. The implementations in today's mobile phone
platforms such as Android can use the contents of a QR
code as a URL to open in the phone’s Web browser. (Apple
iPhones are supposed to be able to read QR codes using the
free Semacode software.) Therefore, you can track usage of
these barcodes using such tools as web site log
analyzer. Other data formats usable by mobile phones
include vCard, which is used to store a person's contact
information. Unlike URLs, usage of these cannot easily be
tracked (i.e. if the user dials the phone number rather than
opening a URL embedded inside). Although bare URLs are
customarily used with QR code, vCard does have a URL
field. If you want to generate QR codes from your web site,
you can use Google Charts (as Adam Straughan says), or
you can use one of the many libraries that exist for popular
programming languages (for example, http://phpqrcode.sourceforge.net/ for PHP, or
http://code.google.com/p/ezxing/ for Java) if you wish to do
so on your own server. You would have to supply a valid
URL or vCard as the text to encode in order for the QR
code to be scannable by a mobile phone. Industrial
applications differ in what is encoded. Most likely, you
would not store the QR code images themselves in the
database. Instead, you would store the URL or other text
contained within the barcode so that you can look up
necessary information when the barcode is scanned or
regenerate the barcode if needed. So if you haven’t seen one
before, here’s a working one. You might already know how
to use a QR code and if so, go ahead and scan the QR Code
right from the screen.
As with any new technology that allows and encourages
sharing data, there is always the chance that identification
and financial information may be at risk. QR codes that are
scanned to gain instant access to a text message are less
likely to place a user’s identity and personal information
at risk than near field communication used for a contactless
payment. However, consumers need to be aware that
security concerns may be an issue. Both QR codes and tags
using near field communication technology are designed to
be accessed using mobile phones. User permissions to gain
access to information grants access to user information, use
of the camera applications, the ability to read or write data,
track GPS information, and browser history is required
when accessing some data. All these places personal
information at risk from fraudulent sites and malicious
programs. Near field communication is technology that
uses low frequency radio signals embedded in a microchip
or smart tag similar to QR codes. Near field communication
(NFC) uses technology similar to Bluetooth or Wi-Fi
except the data is only able to transmit between very short
distances of no more than a few centimetres. It is popular to
use mobile phones daily in modern life. Among the
numerous applications provided by mobile phone, barcode
utility is one of the important branches. Many companies
supply barcode tools for mobile phones. For example,
Google's mobile Android operating system supports QR
codes by natively including the barcode scanner in some
models, and the browser supports URI redirection function
which allows QR codes to send metadata to the
applications on the device. After investigated the supplied
applications on mobile devices, most of the products
exhibit information accessible to every user. Differ from
the traditional applications of QR Code. An offline
authentication mechanism for QR codes, based on the
technology of visual cryptography, it is possible to check
the identity accessing to the QR codes and to control the
permission to the protected data.

Fig. 1 QR code

A QR code consists of black modules (square dots)
arranged in a square grid on a white background, which can
be read by an imaging device (such as a camera)
Processed using Reed–Solomon error correction until the
image can be appropriately interpreted;
Data is then extracted from patterns present in both
horizontal and vertical components of the image

WEBCAM

- web cam is video camera, which is used to capture image.
Generally it is connected by usb; similar cable to computer.
A webcam – short for ‘web camera’ is a digital camera
that’s connected to a computer. It can send live pictures
from wherever it’s sited to another location by means of the
internet. Many desktop computer screens and laptops come
with a built-in camera and microphone, but if yours doesn’t,
you can add a separate webcam at any time.
There are various types. Some are plugged into computers through USB ports, but others are wireless (wifi). Other features might include:
- An integral microphone
- The ability to pan and tilt
- In-built sensors that can detect movement and start recording
- A light that, when on, will let you know that the camera is in use.

There’s a wide range of things that you can do with a webcam.

Step 1: Buy your webcam from a reputable supplier, either online or a local computer shop. Webcams come in all shapes and sizes, and vary from basic models to more complicated ones that come with extra gadgets such as motion detectors. Prices vary a lot, too. Make sure that the one you choose has a built-in microphone if you want to use your webcam for chatting to friends and relatives.

Step 2: Carefully read the installation instructions before attempting to install the webcam.

Step 3: Make sure you have everything to hand that you’ll need to complete your installation. The webcam should come with a USB cable that will connect it to your computer.

Step 4: The webcam package includes a CD containing important software. Insert this into your computer’s CD drive. The set-up program should run automatically, but if it doesn’t, click Start and then My Computer. Double-click on the disk drive as this will prompt the files to run on the CD.

Step 5: Make sure that you follow meticulously the steps of the software program – you’ll be installing the drivers that allow your computer to communicate with the webcam. It may be important to plug in the webcam in a certain order with other cables and equipment, so only plug it in when prompted to do so.

Step 6: Now position your webcam. If it has a monitor clip, attach it securely to the top of your screen pointing at your face just so that that people at the other end can see your whole face and not just your forehead. Once you’ve adjusted it to your satisfaction, don’t fiddle with it during a call – there’s nothing more irritating to the person you’re talking to than to spend a call looking, first, at the light fitting and then at the carpet while you’re chatting. If your webcam doesn’t have a clip, make sure it’s sitting firmly on a flat surface so that your web pictures are level.

Step 7: Now you’ve completed the set-up, it’s time to see the results! Click Start again and find your webcam program. Double-click on it and the program will open up.

Webcams are inexpensive, real-time device webcams include a lens, image sensor, and may also include a microphone for sound. Consumer webcams provides VGA resolution video and frame rate of 30 frames per second job of webcam is to read the image from the sensor and transmit it to the host computer. Each frame is transmitted uncompressed in RGB or YUV or compressed as JPEG. Application program This is middleware between hardware setup and computer. Application program written in programming language like java,vb.net, or assembly language Application program having connectivity with central database of information including vehicle no, and details of vehicle registration. The task of application program is to perform transaction on database.

REFERENCES

Communication Support System”. In C. Montgomerie & J. Seale (Eds.), *Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2007* (pp 3330-3336).


