
A Survey on Association Rule Mining Algorithm
and Architecture for Distributed Processing

1. Imran Qureshi 2. Jammi Ashok 3 Vinaysagar Anchuri

1Associate Professor, 2Head of CSE Dept, 3Assistant Professor
1,2,3Department of Computer Science and Engineering,

Guru Nanak Institute of Technology, Hyderabad, AP-INDIA.

Abstract-Association rule mining is a data mining technique
used to uncover previously unknown hidden patterns or rules
from huge databases usually tera and peta bytes of data.
There are many popular algorithms for mining various
association rules like Apriori, portioning, dynamic item set
counting etc. But the main drawback of these algorithms is
their sequential nature. Processing large databases in
sequential order has many disadvantages like time consuming,
scalability and performance issues. In order to avoid the
above said problems we look for parallel or distributed
association rule mining for providing scalability and better
performance.

Keywords: Association, mining, frequent item sets, Apriori
algorithm

I INTRODUCTION
Association rule mining is used to find relationships in a
given data set. Many organizations are showing their
interest to discover such relationships in their databases
which helps them to take strategic business decisions to
improve their performance. One classic example where
association rules mining is market basket analysis which is
used to analyze customer buying habits by finding
association between between different items placed in their
basket. By doing so they get an insight into which items are
bought frequently altogether. By this relationship they can
make some decisions like arranging the store in such a
manner that all frequent items bought together are placed in
opposite racks or by given some promotional offers like if
X is bought then there is 5% discount on Y. In this way
sales will be increased. Market basket analysis is just one
example where association rule mining is used it can also
be used different purposes like marketing, advertising, floor
placement and inventory control. Although they have been
used for other purposes as well including predicting faults
in telecommunication networks. Association rules are used
to show the relationships between data items Computer
antivirus [support =2%, confidence=60%]
The above rule says that if a computer is purchased then
there is a 60% possibility that he may purchase antivirus
also. And among whole transactions 2% of transactions are
such that computer and antivirus are purchased altogether.
Support and confidence are two measures of rule
interestingness. Support has to be set by the user and care
has to be taken that it should not be too large or too small.

II BASIC CONCEPT
The most common approach to finding association rules is
to break up the problem into two parts:
1. Find all frequent item sets
2. Generate strong association rules from frequent
items.
Finding all frequent item sets is a difficult task where as
generating strong association rules are less costly
A large frequent item set is an item set whose number of
occurrences is above threshold, s. Once the large item sets
have been found, we know that any interesting association
rule X→Y, must have X U Y in this set of frequent item
sets. Note that the subset of any large item sets is also large.
Finding large item sets generally is quite easy but very
costly. The naive approach would be to count all item sets
that appear in any transaction. Given a set of items of size
m, there are 2m subsets. Since we are not interested in
empty set, the potential number of large item sets is then
2m-1. Because of the exclusive growth of this number, the
challenge of solving association rule problem is often
viewed as how to efficiently determine all large items sets.
When m=5, there are potentially 31 item sets when m=30
this becomes 1073741823. Most association rule mining
algorithms are based on smart ways to reduce the number
of item sets to be counted. These potentially large item sets
are called candidates, and the set of all counted i.e. large
item sets are called candidate item set (c).one performance
measure used for association rule algorithm is the size of C.
Another problem to be solved by association rule algorithm
is what data structure is to be used during the counting
process. A trie or hash tree is common.

III ALGORITHM TO FIND FREQUENT ITEM SETS USING

SUPPORT FUNCTION
Input:
D database of transaction
I items
L large item sets
S support
α confidence
Output
R Association rules satisfying s and α
R=Ø;
For each l έ L do
 For each x ɕ l such those x# Ø do
If support (l)/support(x)>= α then
R=RU {x→ (1-x)};

Imran Qureshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4674-4678

www.ijcsit.com 4674

IV COMPARATIVE ANALYSIS OF BASIC ASSOCIATION

RULE MINING ALGORITHMS
IV.I Apriori Algorithm
The apriori algorithm is the most well known association
rule algorithm and is used in most commercial products. It
uses the following property which we call the large item set
property:
Any subset of a large item set must be large
The large item sets are also said to be downward closed
because if an item set satisfies the minimum support
requirements, so do all of its subsets. The basic idea of the
apriori algorithm is to generate candidate item sets of a
particular size and then scan the database to count these to
see if they are large. During scan i, candidates of size i, Ci
are counted. Only those candidates that are large are used
to generate candidates for next pass. That is Li are used to
generate Ci+1. An item set is considered as a candidate
only if all its subsets also are large. To generate candidates
of size i+1, joins are made of large item sets found in
previous pass. An algorithm called Apriori-Gen is used to
generate the candidate item sets for each pass after the first.
All singleton item sets are used as candidates in the first
pass. Here the set of large item sets of previous pass, Li-1 is
joined with itself to determine the candidates. Individual
item sets must have alto be combined.erl but one item in
common in order to be combined.
Algorithm for apriori algorithm
Pass 1
1. Generate the candidate item sets in C1
2. Save the frequent item sets in L1
Pass k
1. Generate the candidate item sets in Ck from the
frequent item sets in Lk-1

1. Join Lk-1 p with Lk-1q, as follows:
insert into Ck
select p.item1, p.item2, . . . , p.itemk-1, q.itemk-1
from Lk-1 p, Lk-1q
where p.item1 = q.item1, . . . p.itemk-2 = q.itemk-

2, p.itemk-1 < q.itemk-1
2. Generate all (k-1)-subsets from the candidate item

sets in Ck
3. Prune all candidate item sets from Ck where some

(k-1)-subset of the candidate item set is not in
the frequent item set Lk-1

2. Scan the transaction database to determine the
support for each candidate item set in Ck

3. Save the frequent item sets in Lk

Let us see one working example

Original table:

Transaction ID Items Bought
T1 {M, O, N, K, E, Y }
T2 {D, O, N, K, E, Y }
T3 {M, A, K, E}
T4 {M, U, C, K, Y }
T5 {C, O, O, K, I, E}

Step 1: Count the number of transactions in which each
item occurs, Note ‘O=Onion’ is bought 4 times in total, but,
it occurs in just 3 transactions.

Item No of transactions
M 3
O 3
N 2
K 5
E 4
Y 3
D 1
A 1
U 1
C 2
I 1

Step 2: Now remember we said the item is said frequently
bought if it is bought at least 3 times. So in this step we
remove all the items that are bought less than 3 times from
the above table and we are left with

Item
Number of

transactions
M 3
O 3
K 5
E 4
Y 3

This is the single items that are bought frequently. Now
let’s say we want to find a pair of items that are bought
frequently. We continue from the above table (Table in step
2)
Step 3: We start making pairs from the first item, like MO,
MK, ME, MY and then we start with the second item like
OK, OE, and OY. We did not do OM because we already
did MO when we were making pairs with M and buying a
Mango and Onion together is same as buying Onion and
Mango together. After making all the pairs we get,

Item pairs
MO
MK
ME
MY
OK
OE
OY
KE
KY
EY

Step 4: Now we count how many times each pair is bought
together. For example M and O is just bought together in
{M,O,N,K,E,Y}While M and K is bought together 3 times
in {M,O,N,K,E,Y}, {M,A,K,E} AND {M,U,C, K, Y}
After doing that for all the pairs we get

Item Pairs
Number of

transactions
MO 1
MK 3
ME 2
MY 2
OK 3
OE 3
OY 2
KE 4
KY 3
EY 2

Imran Qureshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4674-4678

www.ijcsit.com 4675

Step 5: Golden rule to the rescue. Remove all the item
pairs with number of transactions less than three and we are
left with

Item Pairs
Number of

transactions
MK 3
OK 3
OE 3
KE 4
KY 3

These are the pairs of items frequently bought together.
Now let’s say we want to find a set of three items that are
brought together.
We use the above table (table in step 5) and make a set of 3
items.

Step 6: To make the set of three items we need one more
rule (it’s termed as self-join),
It simply means, from the Item pairs in the above table, we
find two pairs with the same first Alphabet, so we get
· OK and OE, this gives OKE
· KE and KY, this gives KEY

Then we find how many times O,K,E are bought together
in the original table and same for K,E,Y and we get the
following table

Item Set
Number of

transactions
OKE 3
KEY 2

While we are on this, suppose you have sets of 3 items say
ABC, ABD, ACD, ACE, BCD and you want to generate
item sets of 4 items you look for two sets having the same
first two alphabets.
· ABC and ABD -> ABCD
· ACD and ACE -> ACDE

And so on … In general you have to look for sets having
just the last alphabet/item different.

Step 7: So we again apply the golden rule, that is, the item
set must be bought together at least 3 times which leaves us
with just OKE, Since KEY are bought together just two
times.
Thus the set of three items that are bought together most
frequently are O,K,E.
Next step is to generate strong association rules from
frequent item sets which satisfy minimum support
threshold and confidence threshold
Confidence (A→B) =prob (B/A) =support (AUB)/support
(A)
Algorithm for finding strong association rule
For each frequent item set, l , generate all non empty
subsets of f.
For every non empty subset s of l do
Output rules s→ (l-s) if support
(f)/support(s)>=min_confidence

The Apriori algorithm takes advantage of the fact that any
subset of a frequent item set is also a frequent item set. The
algorithm can therefore, reduce the number of candidates
being considered by only exploring the item sets whose
support count is greater than the minimum support count.
All infrequent item sets can be pruned if it has an
infrequent subset.
Drawbacks of apriori algorithm are transaction database are
memory resident and requires many database scans

IV.II AIS Algorithm
Candidate item sets are generated and counted on-the-fly as
the database is scanned
For each transaction, it is determined which of the large
item sets of the previous pass are contained in this
transaction
New candidate item sets are generated by extending these
large item sets with other items in this transaction.
The disadvantage of the AIS algorithm is that it results in
unnecessarily generating and counting too many candidate
item sets that turn out to be small.

IV.III SETM Algorithm
Candidate item sets are generated on-the-fly as the database
is scanned, but counted at the end of the pass
New candidate item sets are generated the same way as in
AIS algorithm, but the TID of the generating transaction is
saved with the candidate item set in a sequential structure.
At the end of the pass, the support count of candidate item
sets is determined by aggregating this sequential structure.
The SETM algorithm has the same disadvantage of the AIS
algorithm. Another disadvantage is that for each candidate
item set, there are as many entries as its support value.

IV.IV AprioriTid Algorithm
The database is not used at all for counting the support of
candidate item sets after the first pass.
The candidate item sets are generated the same way as in
Apriori algorithm.
Another set C’ is generated of which each member has the
TID of each transaction and the large item sets present in
this transaction. This set is used to count the support of
each candidate item set
The advantage is that the number of entries in C’ may be
smaller than the number of transactions in the database,
especially in the later passes.

IV.V AprioriHybrid Algorithm
Apriori does better than AprioriTid in the earlier passes.
However, AprioriTid does better than Apriori in the later
passes. Hence, a hybrid algorithm can be designed that uses
Apriori in the initial passes and switches to AprioriTid
when it expects that the set C’ will fit in memory.
The main drawback of these association rule mining
algorithms are they are sequential and are not scalable.

V PROBLEM STATEMENT
The association rule mining algorithms require more
number of database scans which is a major drawback if the
size of database is large in order to overcome this problem

Imran Qureshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4674-4678

www.ijcsit.com 4676

focus has to be shifted to parallel association rule mining
which overcomes the scalability problem as well as
performance issues in sequential association rule mining.

VI METHODOLOGY
Parallel processing means doing multiple things at a single
time. Generally there are two types of parallelism
techniques they are data parallelism and task parallelism.
Data parallelism focuses on distributing the data across
different parallel computing nodes. Task parallelism is used
when you have multiple tasks to be done. Task parallelism
divides the tasks among multiple processors. Examples for
task parallelism is pipelining, image processing and graphic
processing
Let us see one example how parallelism speeds up the
execution time. Assume we have to process 1 GB of data to
be processed on a single processor. Assume time taken to
process 1GB data is 100 seconds. Now let us assume that
you have 5 processors working in parallel and you have
divided data into blocks each of 205MB. Assume time
taken to complete one block of data is 10 seconds so the
total time taken to complete the task is 10 seconds which is
a significant improvement over sequential manner.
Traditional parallelism approach was to move data to the
process which results in communication overhead. That is
in this approach 205 MB of data (one block) is moved over
network to some location where t has to be processed. This
results in communication bottleneck. The new approach to
overcome above problem is “process moves to the data”.
That is algorithm which is to process the data will be
moved over network to some location where data has to be

processed. The size of the process is very small compared
to data.

VII DISTRIBUTED ARCHITECTURE FOR ASSOCIATION

RULE MINING
The distributed architecture mainly consists of two units
responsible for storage and processing respectively. This
architecture is a master and slave architecture where master
assigns some works to the slaves and in turn slaves do the
job and reports to the master again. The storage unit is
again divided into two parts responsible for keeping
metadata i.e. the location where the data blocks are stored
which is useful for fault tolerance and keeping backup of
metadata respectively. Let us see now one working
example. Let us assume we want to process 1GB of data in
distributed environment.
The task is given to processing unit which reduces or
partitions the data into block each of 64MB. Approximately
16 blocks, these blocks are distributed to various nodes to
be processed. This distribution has to be done once over
network. Now 1GB data is divided into 16 blocks each at
different location. Now for suppose we want to find out
frequent patterns in this 1GB data. So we have to load the
association rule mining algorithm to the processing unit,
the algorithm will run at 16 different nodes at the same
time and thus the efficiency is increased to a greater extent.
Let us assume if data explodes over night massively still we
can achieve the performance by adding more nodes.
Adding nodes is less costly compared to adding servers.
Thus scalability is achieved using distributed architecture

Parallel processing architecture:

Distributed
Application

Storage unit Processing unit

Node maintaining
Meta data

Node maintaining
backup for metadata Master node- distribute

tasks (Receives heart
beat)

Slave node-performs
task Data node

Imran Qureshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4674-4678

www.ijcsit.com 4677

Fault Tolerance
Fault tolerance is achieved using simple technique called
replication factor of 3. That is each block is replicated three
times and is placed at different locations. For suppose let us
assume one slave has stopped responding in this case the
data at that slave node is lost. At regular intervals of time
master checks for heartbeats of slaves, if master is unable
to find heartbeat of a slave it immediately contacts its Meta
data and finds where the replication is located and
immediately instructs the slave where replica is available to
process the damaged block also. In this way my system is
totally fault tolerance

VIII CONCLUSION
I have described a novel architecture for distributed
association rule mining. I have discussed various
components and their responsibilities for handling the task.
Future work can be done on how to recover the slave nodes
which has stopped responding.

REFERENCES
[1] Data Mining Introductory and advanced topics by Margaret

H.Dunham
[2] Data Mining concepts and Techniques by jiawei Han and Michelin

kamber second edition
[3] M Zaki “Parallel and distributed association mining: A survey”
[4] http://www.saedsayad.com/association_rules.htm
[5] http://nikhilvithlani.blogspot.in/2012/03/apriori-algorithm-for-data-

mining-made.html
[6] ttp://www.ijcta.com/documents/volumes/vol4issue2/ijcta201304022

6.pdf
[7] Hadoop Architecture from Google

AUTHOR’S BIOGRAPHY

Imran Qureshi is presently working as Associate Professor in CSE
department at Guru Nanak Institute of Technology, Hyderabad, and A.P.
He received his B. Tech Degree in Information Technology from Mother
Theresa Engineering College and M.Tech. with specialization in
Computer Science from Al-Habeeb Engineering College, Hyderabad. His
main research interest includes Data mining, Data Structures and
algorithms and Distributed operating systems. He is Pursuing his PhD
from Jawaharlal Nehru Technological University, Hyderabad.

Prof Jammi. Ashok is presently working as Professor and Head of CSE
department at Guru Nanak Institute of Technology, Hyderabad, A.P. He
received his B.E. Degree from Electronics and Communication
Engineering from Osmania University and M.E. with specialization in
Computer Technology from SRTMU, Nanded. His main research interest
includes pattern Recognition, Neural Networks, Data mining and Artificial
Intelligence. He has been involved in the organization of a number of
conferences and workshops. He published more than 55 papers in
International journals and conferences. He has submitted his PhD thesis in
Anna University in 2012.

Vinaysagar Anchuri is presently working as Assistant Professor in Dept.
of CSE at Guru Nanak Institute of Technology, Hyderabad, AP. He took
his B. Tech degree from Christu Jyothi Institute of Technology and
Science, Jangaon, Warangal in Computer Science and Engineering and M.
Tech from Adam’s Engineering College, Polancha, Khammam. His main
interest includes Data Mining, Software Engineering and Semantic Web.

Imran Qureshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4674-4678

www.ijcsit.com 4678

