CIPHER-Text Policy Attribute Based Access to Cloud

Venkateshprasad.Kalluri1, D.Haritha2

1Student, Department of ECM, KL University, A.P, INDIA
2Assistant professor, Department of ECM, KL University, A.P, INDIA

Abstract— Cloud computing, is the significant computing paradigm which allows the users to store their data into cloud. This paper presents a Attribute-Based access to the media in the cloud where it uses cipher-text policy Attribute-Based Encryption (CP-ABE) technique to create an access control structure. By using the algorithms in the access policy the attributes are used to generate a public key in order to encrypt the data and a secret key consisting of user attributes to decrypt the data and is used as an access policy in order to restrict the access of the user. By using ABE technique the encrypted data is trustworthy even on the untrusted server. This requires flexible and accessible cryptographic key management to support difficult access policies. The policy is to assign a key to each user attribute and encrypts the data based on the appropriately distributed keys to corresponding user.

Keywords—Cloud computing, CP-ABE, Access Control, Attribute

I. INTRODUCTION

Cloud computing offers the abstract view to the users and developers, it hides much of the implementation details, it is mainly used in content sharing networks. Examples for these networks are social networking where they are dynamic in terms of storage requirement. However due to the weak security issues the use of cloud is not very fast in content sharing networks.

Access policy is a mechanism that provides security that facilitates the data to user in a controlled manner. The traditional mechanism is that the data is encrypted with the user’s public keys. The data owners encrypt the data using this user’s public key and then uploads the file to the cloud. The user who ever wanted to download the file should decrypt the file with his generated secret key. By doing this there are a few problems like the owner has to get the public key of the user and the same data is encrypted with different public keys this results in storage overhead. For example cryptic text c = E{E(m,sk1),sk2) here encrypting multiple times with the key pair (sk1,sk2) here one user has an attribute key sk1 and another user has an attribute key sk2 this may collude to decrypt the data. Hence for a particular shared data among the multiple users we need to encrypt the data with every user’s public key in order to provide security hence an ordinary encryption is unsatisfactory. Instead if the cipher text consists of the set of attributes then by using the key and access policy we can decrypt the data i.e. the key works only when the attributes in the cipher text satisfies the access policy.

The access policy here is completely based on permission relationship where the relationship is between user attributes and resource attributes. The attributes may be any information of the user’s profession, job roles that is provided and is used to grant the access. However in order to design an access policy mechanism there are many challenges to overcome some of them are (1) user can upload any kind of data like text, media etc. (2) any can give any number of attributes and hence two or more users may have same attributes. (3) any individual may grant any kind of access to any number of users.

This approach allows the user to implement the access control on their data directly in content sharing service rather than through a central administrator. In order to provide a complex access policy mechanism we need flexible and scalable cryptographic key management algorithms. For improving these disadvantages we are using attribute based encryption hence we employee CP-ABE(cipher text policy – attribute based encryption) technique as a remedy to the above mentioned problem in CP-ABE the recipient can decrypt the data only when the user attribute satisfy the access policy and this can be seen as one-to-many public key encryption and the data owner provides access to many users. In this system the users private key is associated with the user attributes and on the other hand the party that is encrypting the data specifying an access policy.

Organization

The paper is organized as follows. Section II gives the related work done. Section III gives the background and bilinear maps and we then discuss the cryptographic and security primitives in section IV. Finally we give the conclusion in section V.

II RELATED WORK

The relationship between the user identification and resource in content sharing applications is dynamic. there are two forms of access management strategies they’re user attribute access management structure and Media Structure minded Access management structure

A) user attribute access management structure

Easier [9] is a design that supports fine-grained access control policies and dynamic cluster membership by victimization CP-ABE theme. a lot of works are projected to style versatile ABE schemes There are two methods to comprehend the fine-grained access management supported ABE they are KP-ABE and CP-ABE. In KP-ABE the cipher text consist of some descriptive attributes which are labeled by the sender and the trusted authority issues a user’s private key and the access policy is involved in the private key which specifies the decryption of the cipher text with the key. Here the disadvantage of this encryption is that the access policy is constructed into user’s personal key. So data owner does
not have the option on who can decrypt the data except
encrypting the data with the set of attributes. Hence it is not
suitable for certain applications as the information owner
must trust the authority who gives the user’s key. The KP-
ABE is secure beneath the final cluster model because it is
monotonic access structure and additionally it cannot
categorical the attributes to reject the parties with whom the
knowledge owner didn’t got to share the knowledge from
membership. To overcome this weakness cipher text policy
attribute based encryption has been created that is proved to
be secured below the quality model. In CP-ABE the access
policy is made within the encrypted data and also the
attributes is with the user’s private key. The attribute
based encryption will be divided into monotonic or non-
monotonic based on the sort of the access structure and
based on the access policy the schemes will be classified as
key policy or cipher text policy. The ideal attribute based
encryption must support data privacy, scalability, fine
gained access control, user accountability, user revocation
and collusion resistant. But the provided access policies are
not appropriate for the scalable media content.

B) Media structured access control

For a video the secure scalable streaming is the
progressive encryption technique. This should be integrated
with error correction technique since it may result in
decryption failure due to the packet loss.an access control
scheme is designed by wu et al which is highly secured and
efficient and predominantly the scheme is flexible as its
“encrypt once, decrypt many ways” is compatible with the
features of jpeg 2000.

Zhu et al. [19] proposed an access management schemes
for streams determined by the MPEG-4 Fine granularity scalability (FGS) normal thus on
allow one encrypted stream to support each forms
of scalabilities simultaneously. The organization of the
media data will be ruined by the media structured access
control in request to ensure the data so that the client will
unscramble the separate figure content with the important
keys. These plans are constrained to productive key
generations furthermore ordinarily expect the presence of
an online key spreading center; and they don't manage
access policies, e.g., how to give user attributes to access
rights

III. PRELIMINARIES

A) ONE WAY HASH FUNCTION

When we take an input string of variable length and
then after applying hash function it produces an output
of fixed length. The hash function is applied in one
direction only and is denoted as H(.),let us assume that
X is the input and by applying hash function the output
will be Y i.e. H(X)=Y.it is impossible to obtain the pre
image X from the image Y. An example for one way
hash function is SHA-1 and MD-5.

B) BILINEAR MAPS

Bilinear maps are utilized to create a relationship
around the cryptographic gatherings. Give us a chance
to assume G1 and G2 be two multiplicative cyclic
assemblies of prime order X and let the generator for
G1 be g, the bilinear map will be e.e: G1 X G1 \rightarrow
G2.the following properties belongs to bilinear maps e.

- Linearity: let a,b \in G1 and c,d \in \mathbb{Z}
\text{we have e}(a^c, b^d) = e(a,b)^{cd}.
- Non-degeneracy: e(g, g) not equal to 1.

Where the bilinear map e and the assembly operation
in G1 are productively processable. A point group over
an elliptic (or hyperelliptic) curve is typically the input
group G1 in a bilinear map.

C) ACCESS TREE:

T - access tree
Nj - j th hub of the access trees
A - attributes of the data user or clients
AA - Attribute authority
ai - ith attribute of the user
L - leaf hubs of the access tree
S - set of attributes of the leaf nodes belonging to a
particular non-leaf node

There is an access policy established in every access
control scheme which provides the access conditions
and based on those conditions the user can access the
information. Here is an access tree which is a
representation of the access policy and this tree
includes both leaf and non-leaf nodes and each leaf
node consist of some attributes like age, gender etc.
each non-leaf node may have a leaf node or non-leaf
node or both. The root node is labeled as N1 and all the
other nodes are labeled as Nj where j taken vales from
2 to some limited number successively. A Boolean
function which is derived from the access policy is
related with every non-leaf node and the Boolean
function of the non-leaf node is represented as nj/n
where n is nothing but the child nodes belonging to Nj
and its Boolean value is calculated to be true if and
only if if it has atleast nj child nodes. For suppose the
Boolean function for the node N2 is 2/3 or equally
a1a2+a2a3+a1a3 is true if a1 and a2 belongs to S and
we can say nj is evaluated to be true. T(A) is evaluated
to be true if the Attributes of the user satisfies the
access policy and this can be explained as following.
For any leaf node Nj which is accompanying with the
attributes belonging to A its Boolean value is evaluated
to be true and for every non-leaf node the Boolean
value is the significance of its Boolean function and
the T(A) = true if and only if the root nodes Boolean
value is true.
Consider an example the given attributes are \{a1,a2,a3,a4,a5\} let the access policy be the a5,a4 and any other two attributes of the attribute set then the access is granted. then the table presents some cases where T(A) is true.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Node N2</th>
<th>Node N1</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1,a2,a3,a4</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>a1,a2,a3,a5</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>A3,a4,a5</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

D) CIPHER-TEXT POLICY ATTRIBUTE BASED ENCRYPTION

The CP-ABE scheme is first proposed by Bethencourt et al in 2007. this CP-ABE scheme is similar to the KP-ABE (key policy attribute-based encryption).in key policy attribute based scheme the access policy is built in the users secret key where as in CP-ABE (cipher text policy attribute based encryption) the access policy is switched into the encrypted data and the attributes are linked with the public key of the user in order to decrypt the data. If the attribute set in the users secret key satisfies the access policy present in the encrypted data then the data will be decrypted.

AB-Setup

The attribute authority run an initialization algorithm by taking a security parameter () as an input. Then it outputs two keys a master key denoted as MK and a public key PK.A group G1 is which is to the input to the bilinear maps with a prime order of p and with a generator g and then it chooses a, β from Zp where Zp is a set of integers and produces an output PK(public key) and MK (Master key). Where PK=\{g, g_1 = g^β, g_2 = e(g, g)^a\} and MK=\{β, g^α\}.

AB-Encryption

Here the attribute authority runs the algorithm it will take the input as master key and the set of the attribute belonging to A and generates a private key(Sk) and distributes it to the user. The attribute authority takes \(r \in Z_p \) and \(\eta_1 \in Z_p \).

\[
Sk = \{D = g^{(α+ r)/β}, D_1 = g^{H_1(a_1)\beta}, D_1 = g^{r_1}\}_{\eta_1 \in A(a)}
\]

AB-Encrypt

The data owner runs the algorithm by taking the input message M, set of attributes and public key. The encryption happens dependent upon access tree. The data owner selects a random polynomial \(f(i) \) and sets its degree \(d = n_j - 1 \) where \(n_j \) is threshold such that if the Boolean value of the child nodes (\(n_j \)) is true then the Boolean value of the \(N_j \) is true. Let \(f_j(0) = s \) where \(s \in Z_p \) select a polynomial \(f(\cdot) \) for every non-root node \(N_j \). By letting \(f_1(0) \text{ be } \text{parent}(N_j). \) The cipher text can be given as

\[
CT = \{B = k\cdot g_1^{s}, C = g^{s}, E_j = g^{f_j(0)}, E_j = H_1(a_j)f_j(0)\}_{\eta_1 \in T}
\]

AB-Decrypt

The data user executes this algorithm by taking the cipher text, secret key and the set of attributes in order to decrypt the cipher text as per the access policy.

a) Set the Boolean value of \(N_j \) is TRUE if \(N_j \) is a leaf node and the attribute, \(a \in A \cap S \).

\[
v_j = \text{DeNode}(CT, SK, f_j(a)) = e(g^*, g_{f_j(0)}) e(H_1(a_j)^{r_1}, g_{f_j(0)})/e(g, H_1(a_j))^{rf_j(0)} = e(g^*, g_{f_j(0)})
\]

The Boolean value of \(N_j \) is not true if the last three equations are not due to the bilinear property.

b) If \(N_j \) has child nodes then let \(S_j \) be the random set of the \(n_j \) sized set of the child nodes \(z \). For suppose if the node has \(x \) child nodes then it call the \(\text{DeNode}(CT, SK, Z) \) and stores output as \(f_x \). \(f_x \neq \emptyset \). If no such set exist then it is not satisfying the access policy otherwise it fulfills the access policy setting \(N_j \) value to TRUE.

\[
f_x = \text{DeNode}(CT, SK, Z)
\]

The final result is:

\[
e(g, g)^{rf_j(0)}
\]

In CP-ABE the respective user’s private key is used to decrypt the data where the access policy is built into the encrypted data. In CP-ABE the encrypted data can select who can decrypt it whereas this remained as the disadvantage in KP-ABE. The attributes in the user’s private key plays a vital role as these are responsible to fulfill the access policy built into the encrypted data. The CP-ABE access control supports in the real time environment. The concept of CP-ABE is also used in MCB-ABE. In MCB-ABE the CP-ABE is used to encrypt the multiple messages with the same public key and the access policy is built into the encrypted data. When the user attributes satisfy the access policy then the corresponding message will be decrypted the remaining message will be in encrypted form because the multiple messages are encrypted together with the same key.

CONCLUSION

CP-ABE primarily based access management permits a data owner to enforce access management supported attributes of data customers while not explicitly naming the particular information customers. However, CP-ABE supports just one privilege level and therefore isn’t suitable for access management to ascends media. In this paper we presented a basic development of the CP-ABE and how the access structure is built in the CP-ABE. Cloud computing is the highly adaptive technology and mobile devices are becoming widespread the above presented CP-ABE access control helps to free from the computational demanding operations on the cloud server. The experimental results show that the CP-ABE is flexible, scalable, user, accountability, collision, resistant, user revocation. With the assistance of the cloud the acceleration of the decryption increased but it is still slow in some low-end devices because a Integrated exponentiation operation is required.
REFERENCES

[10] A.Balu, K.Kuppusamy, Ciphertext policy Attribute based Encryption with anonymous access policy, International journal of Peer to Peer Networks, pp1-8,Vol 1, Number 1, October 2010