
Formal Specification of UML Use Case Diagram
- A CASL based approach

Bhaswati Mondal#1, Barun Das*2, Prasenjit Banerjee@3
#1Department of Computer Science, Vidyasagar University, Midnapore, West Bengal, India
*2Department of Mathematics, Sidho Kanho-Birsha University, Purulia, West Bengal, India

@3Department of Computer Science, Midnapore College, Midnapore, West Bengal, India,

Abstract— Unified Modelling Language (UML) gives a
modelling approach to design a system. Use Case diagram is
one of the behavioural approach of UML which describe the
behavioural pattern of the system. It has been observed that
UML diagrams are not formally specified. Formal
specification gives a specific way to design a system as a whole
using mathematical notation. This paper proposed formal
specification of UML use case diagram using the Common
Algebraic Specification Language (CASL) in object oriented
paradigm.

Keywords— Unified Modelling Language (UML), Use Case
diagram, formal specification, non-formal models, Common
Algebraic Specification Language (CASL), Object oriented
Software.

I. INTRODUCTION

The Unified modelling language (UML) [1], [8], [38] has
become a de-facto standard notation for analysis and design
models of object oriented software system. It has been
observed that graphical representation of model is easily
accessible and understandable to the user. The primary gap
between the developer and the user, has been easily fulfilled
by the graphical description. In UML, Use Case diagram
defines the behaviour of a system. It is a visual tool
representation that helps the system’s end user to
understand the behaviour of an element. UML have a well-
defined, fully explored semantics which is required in order
to ensure that the UML concepts are precisely stated and
defined.

In “traditional” engineering like electrical and civil
engineering always made their development based on better
mathematical technical [2]. So, the validation of these
engineering are more perfect and errorless. But the term
formal methods that rely on mathematical representation of
software, specification analysis and proof, mathematical
logics, program verification are not so much familiar to
software engineering. If the formal methods can be used in
software engineering then it can discover a way to find out
an errorless system specification in an unambiguous way.
In critical system such as air traffic control information
system, railway signalling system, spacecraft systems, have
very high validation cost and the costs of system failure are
large and increasing. Formal methods can help in this
matter by reduce these costs. Formal methods [39] use
mathematical notations to precisely express requirements
specification. The formal specification removes ambiguity
which is inherently present in natural language specification.

It also addresses the software reliability and also can
effectively improve system reliability, design time and
comprehensibility.

The Common Algebraic Specification Language (CASL)
[3] is an expressive language for the formal specification of
functional requirements and modular design of software. It
describes various contexts, subsorts, partial functions, first-
order logic, structured and architectural specifications. It
also facilitates interoperability of many existing algebraic
prototyping and verification code.

The paper has been organized in seven parts. In Section 2,
the previous related research on the equivalent domain have
been summarized. In Section 3, several element of use case
diagram in UML has been discussed using CASL and the
case study has also been done to illustrate the model in this
section. In Section 4, the future work of the work has been
discussed and also concludes.

II. RELATED RESEARCH

Many researches have been proposed towards direction
of UML modelling. This section has been organized those
proposals with two perspectives. There are many researches
[4], [5], [6] have been proposed using UML but these are
Non-formal models. Whereas the researches [7, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41]
have been proposed using UML and also formally specified.

A. Non-formal model using UML

In this section the published research works that are
about non-formal model using UML have been discussed.

In [4], an AUTomotive Open System Architecture in

shortly AUTOSAR model has been proposed which is
based on architectural component and their interoperability
and also supports both client-server and sender-receiver
communications. As the main focus of this model is only
based on architecture not possible and no design of
modelling construct for component based system has also
been discussed.

In [5], a component model has been proposed called
KobrA (KOmponent Basic Rite Anwendungsentwicklung).
It is a based on UML representation. In KobrA the
components are not physical components but logical
building blocks of the software system. The model provides
client-server architecture for communication. This model
does not provide any support for EFP and it also does not
support any formal specification.

Bhaswati Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2713-2717

www.ijcsit.com 2713

In [6] Palladio component model has been proposed
which provides a domain specific modelling language for
component based system. This proposal has been expect to
increase the performance of the early life-cycle. It defines
its own metamodel specified in EMF/Ecore. The
components and their role can be connected via assembly
connectors to build an assembly. This model also supports
client-server architecture for communication. UML has
been used to specify the interface in this proposal. However
this model does not support any formal specification.

B. Formal model using UML

Under this section the published research work have been
discussed about formal model using UML.

In [7], a structured-expandable format of a use case has
been proposed which is expressed in Z notation because Z
language is a formal specification language. Then it is
represented visually using an Entity-relationship diagram.
The implemented approach would bridge the gap between a
formal language, which is mathematical and UML use case
diagram that is visual and used widely to capture
requirements. The main goal is when a tool will developed
using this approach it will produce a visual representation
of a formalized UML use case diagram, from which
automated traceability and verification of the design phase.
The z-notation is a mathematical notation, specification
language and a model-based notation. Z-specification can
serve as a single, reliable, reference point for those who
investigate the customer’s need, test results, type errors in
much the same way that a compiler checks code in an
executable programming language. It cannot be compiled
into a running program. And also another main thing is that
Z is a way by which a specification can be decomposed into
some small pieces called schemes.

In [22], a result has been shown on formalizing UML
behavioural diagram in B notation. It present automatic
transformation schemes from UML behavioural diagrams to
B specification with the help of UML specification as a tool.
B specification has been developed much easily. B is a
formal software development where the theoretical aspects
of the methods such as the formulation of proof obligations,
have done automatically. For these reason B has been
adapted for large scale industrial projects. The UML and B
is an appropriate combination of object-oriented techniques
and formal methods which can give a high quality, errorless
and a perfect practical approach of software development.
In UML-B integration UML has been controlled by B
specification as B supports powerful tools and B
specification has become easier with the help of UML
specification. This means they are both highly supportive to
one another. But B has been still not so easy to learn and
use due to its high cost. It can also be said that it is not user
friendly.

In [41], the article explains how Aspect-UML models
can be specified within the Alloy and how aspect
interactions can therefore be verified. That means the work
that has been considered is Aspect-oriented (A-O) models
written in Aspect-UML. Alloy [36, 35] is a structural
modeling language, based on first order logics and designed
for the specification of object models through graphical and

textual structures. It is based on the ideas of Z [37]. A-O
programming provided mechanisms to capture and execute
crosscutting concerns in software applications to improve
modularity, reuse and maintainability. A-o helps developers
to modify the behavior of a base program by introducing
aspects which effects at various points on crosscutting
throughout a program. But it is difficult to predict the effect
of a given aspect on this base program. A-O concepts
provide aspects, advices, point cuts, joint points and
crosscutting dependencies. It also allows formal annotations
such as pre and post conditions. Alloy provides a simple
model specification language based on first order logic as
well as a model analysis and simulation tool [37].

In [40], a way has been proposed which can create a
bridge between informal and formal specification. Most
projects have an informal description which can be
understood by all people and also there is a need of some
formal requirements which can make a project more
errorless and perfect. The formal specification can improve
the informal specification understanding of the system by
exposing gaps and ambiguities in the formal specification.
Object constraints Language (OCL) has been used to
present the use case form of informal requirements into
more formal specifications. But at the development point
OCL constraints is not so easy and clear. Because there are
so many questions that who is going to add them to the
UML diagrams: customers, analysts or designers? Who
should understand OCL? That is why OCL is hard to use in
industry.

The work proposed in [24, 23], described the translations
between Object-Z and UML class diagrams. A metamodel
of Object-Z has provided for the benefit of modellers
unfamiliar with this formal language. The syntax has been
defined by the metamodels, and a model transformation
language is dedicated to define the translation.
Unfortunately, even this recent work only addresses a
subset of the class diagram fragment of UML. The work
aims to enable formal verification of UML models, but as
yet we have no demonstration nor descriptions of specific
techniques.

Model Driven Architecture [25] aims to enable the
simultaneous use of many languages, each with syntax
defined in MOF, by using model transformations between
these languages. The real contribution of [23] is in
recognising that formal languages can also participate in
this way. Definitive formal semantics could be provided by
a Z (or Object-Z) metamodel and UML to Z model
transformation. This would enable tool integration, and
provide insight into the formalism for the more advanced
models. Attempts to directly translate diagrams into formal
languages usually ignore the metamodel definition of the
language.

The paper [26] advocates an integration of UML and
formal methods, in which a UML class diagram is
translated into the formal specification language Z. The Z
specification is then manually refined, adding details not
expressible using class diagrams. The rules and guidelines
for semi-automatic translation, they hope, will give insights
for developing a more precise semantics for UML.

Bhaswati Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2713-2717

www.ijcsit.com 2714

In the paper [27], it also made integration of a formal
language, in this case Object-Z, into the development
process. The Object-Z specification manually derived from
the class diagram also specifies the class operations. The
class is further constrained by a protocol state-machine,
which together with the Object-Z schema. They consider
several notions of consistency and study which of these are
preserved under CSP notions of refinement. However, the
intended semantics of the UML fragment are captured by
this translation. It is also not clear that the CSP notions of
refinement are applicable.

The paper [28] proposes semantics which reconcile the
apparently conflicting parts of the UML definition. These
semantics concern associations, their ends and the read,
create, and destroy link actions. In an appendix to the report,
it gives an example model to illustrate the controversy, and
expresses his semantics for it in Z. This is intended merely
as a precise statement of the proposal explained in the body
of the paper. However, this is the most convincing example
we have seen of using Z to express dynamic aspects of
UML. It is also a good example of why Z will never be
widely used by developers: it is not easy to read.

Algebraic specification extended with “generalised
labelled transition systems” is used by the paper described
in [29] is to formalise parts of UML. It made this by
translating UML diagrams into the language CASL-LTL,
though it emphasises that the particular language is
immaterial. This work explicitly aims for a way of giving
useful formal semantics to the whole of UML, and as the
title suggests, they take seriously the idea that the different
diagrams combine to specify a single system. However they
ignore the fact that the official definition already interprets
the variety of diagrams into a single abstract syntactic entity,
the model.

The Object Constraint Language (OCL) [30] is very
much like the languages of traditional symbolic logic, and
at least two groups have attempted to make it precise by
translating it into well understood systems of logic,
intending to enable theorem proving about models.

In the paper [42] use higher order logic (HOL) as
implemented in the generic interactive theorem prover
Isabelle. The paper [31] uses first order logic. OCL 2.0 has
a third truth value “undefined” and allows collections of
collections, so first order logic will probably not suffice to
formally define it. Neither group make use of the OCL
metamodel in their translations. It offers different,
equivalent translations optimised for readability or for
automated theorem proving respectively. With a foundation
as suggested in these works, OCL itself could be the target
formal language for a model transformation defining the
semantics of UML. This would probably require additions
to the current limited temporal operators of OCL though.

The OCL formalisation of the paper [31] is used in the
the key project [34]. This is a tool for the deductive
verification of Java-Card programs using a specialised
dynamic logic [32]. This logic is implemented in a generic
theorem prover integrated with the Together modelling tool,
and thus provides a practical platform integrating UML
modelling and formal methods. Although this work is not
aimed at improving the definition of UML, it is instructive.

The deductive rules symbolically execute the Java-Card
program, and thus give a clear and precise account of the
language semantics. The rules could even provide
educational interactive animations of the language. Unlike
Java-Card, UML is non-deterministic and has no main
procedure, but it is conceivable that one could develop such
a dynamic logic for UML. The logic would have rules for
each of the UML actions. This would define model
dynamics, and the meaning of each of the diagrams could
be expressed by translation into the dynamic logic language.
It would also enable deductive verification of UML models.
In its traditional form, dynamic logic is even less readable
than Z. But a UML specific logic could use OCL notation
for its static parts, whilst the program parts would be
written using the yet to be fixed standard UML action
language.

The paper [33] uses a formal language derived from
dynamic logic to give formal semantics for parts of UML
class and state machine diagrams. It defines as a system is a
black box, which responds instantly to external stimuli. It is
not possible for example to make sense of a sequence
diagrams in such a system. This might be a useful
interpretation of UML for requirements engineering, as
these authors see it, but from our perspective, it is inventing
a new language rather than providing a better definition of
the existing one.

Since neither Z nor B provides any architectural
specification and algebraic prototyping, so a formal
specification language is strongly needed which satisfy all
these criteria. Common Algebraic Specification Language
(CASL) fits for these criteria solving the problem domain.

III. PROPOSED WORK

Though UML defines Use Case but it does not provide any
strict format or style for defining Use Case. This paper has
proposed a structured modelling elements with the
corresponding graphical notation to describe the format of
Use Case.

A. Structural modelling elements and corresponding
graphical notation

Use Case Name: It defines the name of the Use Case.
Use Case Name contains a character or alpha numeric
value to describe the name of the Use Case. It can be
graphically represented as a rectangular box .

Id: An Id of the use case defines the unique
identification of a Use Case. It contains a numeric or an
alpha numeric value to uniquely identify the Use Case.
The Id is defined as free type in CASL.

 free type Id ::= sort int /sort Nu
 int ::= 0/1/2/……../n
 Nu ::= sort char ^ sort int
 char ::= a/b/……./z

Description: It describe whole thing i.e. all works done
by the Use Case. It has been described as sentence in
CASL. It is a total functions of the sort char. So in CASL
it can be described as-
 op desc : char → char

Bhaswati Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2713-2717

www.ijcsit.com 2715

 Where desc is a total function between the sort
characters.

Actor: It defines the player or the performer by whom the

use case may be performed. The Actor can be graphically

represented as .
Relationship: It defines the different relationships among

the different use cases. There are basically two types of
relationships-provided and required. Provided relationship
describe that the use case provides few services or a single
service to another use case and required relationship
provides the requirement of the use case from another use
case. We define relationship as total function and provided
and required relationships as partial functions. A total
function REL can be defined as follows-

op REL: PR RD
where PR & RD are partial functions defined as
op PR: PR< REL
op RD: RD< REL
The graphical representation of the relationship can be

define as .
Service: It describes different workings or methods

performed by a use case. A service S contains Id as free
type, relationship as total function (TF) and partial
functions (PF) or operations, description as sentence. So, a
service can be defined as a signature S= {free type, (TF,
PF), sentence). A service can be graphically represented as
a circle.

The structural modelling elements and their graphical
representations are shown in Table 1.

TABLE I: USE CASE STRUCTURAL MODELLING ELEMENTS AND THEIR

GRAPHICAL NOTATION

Use Case Structural
modelling elements

Graphical Notations

Use Case Name

Actor

Relationship

service

B. CASE Study

In this section, a case study has been done to depict the
real life problem like Library Management System. Here
the Library Management System has been described
partially. Only the Book Management (BM) has been
discussed as example. The BM contains few relationships
as book-issue, re-issue, book-return, registration, cancel-
registration etc. It also contains few services as ESI, EBI,
and EBN etc.

Use Case Name: Book-Management
Id: id1
Description: The system describes about the relationship
of

 the student of the book.

Actor: student, librarian
Relationship: book-issue, member-validated, book-

validated
Service: {Enter student id / Enter book id / Check

whether the book is available or not / Issue the book}.
The corresponding UML diagram has been shown in

figure 1.

Figure 1. UML Use Case Diagram Book-Management

Each part of the above Book-Management has been

defined in CASL as follows-
Here service Enter student id can be defined in CASL as-
ESI:= {S1, (Book-issue, member-validated, book-

validate), desc}
Where S1 is the free type and it defines as-
free type S1::= sort Nu
Book-issue is a total function and member-validated &

book-validate are partial functions. It can be defined as-
op Book-issue: member-validate  book-validate
op member-validate: member-validate < Book-issue
and op book-validate: book-validate < Book-issue.
desc can be defined as sort (N1) ::= {Enter member

details}
sort (N2)::= {Enter book details}
op desc: N1  N2

IV. FUTURE WORK AND CONCLUSIONS

This paper has proposed the formal specification of the
use case diagram of UML. This paper also proposed a set of
structural modeling elements and their graphical notations.
Using the Common Algebraic Specification Language
(CASL), this use case model of UML has been formally
specified. A case study has been done to depict the problem
domain as library management system. Furthermore, it can
be validate using a CASE tool in future.

REFERENCES
[1] Grady Booch, James Rumbaugh, Ivar Jacobson; The Unified

Modeling
Language User Guide (1999).

[2] I. Sommerville,, Formal Specification: book chapter 27, 2009,
available at http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web
Chapters/PDF/Ch_27_Formal_spec.pdf.

[3] Egidio Astesiano, Michel Bidoit ,H- el. ene Kirchner,Bernd Krieg-
Br 1 uckner, Peter D. Mossese, Donald Sannella Andrzej Tarlecki.,
“CASL- the Common Algebraic Specification Language”, E.

Bhaswati Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2713-2717

www.ijcsit.com 2716

Astesiano et al. / Theoretical Computer Science 286 (2002) 153 –
196

[4] AUTOSAR Development Partnership, “AUTOSAR – Technical
Over- view v2.0.1”, 27/06/2006, Available at
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.
pdf.

[5] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B. Paech, J. Wüst and J. Zettel, Component-
based Product Line Engineering with UML, Addison-Wesley, 2002.

[6] S.Becker, H.Koziolek,R. Reussner, “Model-Based Performance
Prediction with the Palladio Component Model”, Proc. of the 6th
International Workshop on Software and Performance, Buenos
Aires, Argentina, 2007.

[7] S. Sengupta, S.Bhattacharya (2006), “Formalization of UML Use
Case Diagram – A Z Notation Based Approach”, International
Conference on Computing & Informatics (ICOCI) Kuala Lumpur,
Malaysia,6 – 8 June 2006.

[8] OMG: Unified Modeling Language Specification, version 2.0.
Available at http://www.omg.org/uml

[9] Smith G.O., The Object-Z Specification Language. Advances in
Formal Methods. Kluwer Academic Publishers (2000).

[10] Nuno Am´alio, Susan Stepney, and Fiona Polack, Modular UML
Semantics: Interpretations in Z Based on Templates and Generics,
FACS'03 Workshop on Formal Aspects of Component Software,
Pisa, Italy, September 2003

[11] Xuede Zhan, Huaikou Miao, Ling Liu, Formalizing the Semantics
of UML Statecharts with Z*, The Fourth International Conference
on Computer and Information Technology (CIT'04) 09 14 - 09,
2004

[12] Xiaoping Jia, A Pragmatic Approach to Formalizing Object-
Oriented Modeling and Development, COMPSAC, 1997

[13] Jing Sun, Jin Song Dong, Jing Liu, Hai Wang, Object-Z Web
Environment and Projections to UML, 10th International World
Wide Web Conference (WWW-10), May 2001.

[14] David Roe, Krysia Broda, and Alessandra Russo, Mapping UML
Models incorporating OCL Constraints into Object-Z, Technical
Reports - Computing - Imperial College London, 2003

[15] Nuno Amalio and Fiona Polack, Comparison of Formalism
Approaches of UML Class Constructs in Z and Object-Z, 2003

[16] Margot Bittner, Florian Kamm¨uller, Translating Fusion/UML to
Object-Z, Technical University of Berlin, June 2003.

[17] Sophie Dupuy-Chessa and Lydie du Bousquet, Validation of UML
models thanks to Z and Lustre, Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for
Increasing Software Productivity, 2001

[18] M. Shroff, R.B. France, Towards a formalization of UML class
structures in Z, COMPSAC '97 - 21st International Computer
Software and Applications Conference 08 11 - 08, 1997 Washington,
DC

[19] Soon-Kyeong Kim, David Carrington, Roger Duke, A Metamodel-
based transformation between UML and Object-Z, Queensland
IEEE 2001 Symposia on Human Centric Computing Languages and
Environments (HCC'01) 09 05 - 09, 2001 Stresa, Italy

[20] S.-K. Kim, D. Carrington, An integrated framework with UML and
Object-Z for developing a precise and understandable specification:
the light control case study, Seventh Asia-Pacific Software
Engineering Conference (APSEC'00) 12 05 - 12, 2000 Singapore

[21] Soon-Kyeong Kim and David Carrington, A Formal Mapping
between UML Models and Object-Z Specifications, Proceedings of
the First International Conference of B and Z Users on Formal
Specification and Development in Z and B, 2000

[22] Thomas Tilley, Towards an FCA based tool for visualizing formal
specifications, ICCS 2003, The 11th International Conference on
Conceptual Structures, July 2003, Dresden
Hung LEDANG, Jeanine SOUQUIÈRES, “Formalizing UML
Behavioral Diagrams with B”, available at
www.researchgate.net/...Formalizing_UML_behavioral_diagrams_
with_B .

[23] Soon-Kyeong Kim, Damian Burger, and David A. Carrington. An
MDA approach towards integrating formal and informal modeling
languages. In FM, pages 448–464, 2005.

[24] Soon-Kyeong Kim and David A. Carrington. A formal mapping
between UML models and object-Z specifications. In Proceedings
of the First International Conference of B and Z Users on Formal
Specification and Development in Z and B, pages 2–21, 2000.

[25] Joaquin Miller and Jishnu Mukerji. MDA guide. Technical report,
Object Management Group, 2003. http://www.omg.org/mda.

[26] Jean-Michel Bruel and Robert B. France. Transforming UML
models to formal specifications. In Proceedings of the OOPSLA’98
Workshop on Formalising UML, 1998.

[27] Holger Rasch and Heike Wehrheim. Checking consistency in uml
diagrams: Classes and state machines. In FMOODS, pages 229–243,
2003.

[28] D. Milicev. On the semantics of associations and association ends in
UML. Technical report, University of Belgrade, School of Electrical
Engineering, February 2006.

[29] Gianna Reggio, Maura Cerioli, and Egidio Astesiano. Towards a
rigourous semantics of UML supporting its multiview approach. In
H. Hussmann, editor, FASE 2001, volume 2029 of LNCS, pages
171–186. Springer, 2001

[30] Object Management Group. OCL 2.0 specification. Technical report,
Object Management Group, 2005. http://www.omg.org/docs/ptc/05-
06-06.pdf.

[31] Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating
the object constraint language into first-order predicate logic. In
Proceedings of VERIFY, Workshop at Federated Logic conferences
(FLoC), 2002.

[32] [32]. Bernhard Beckert. A dynamic logic for the formal verification
of java card programs. In Java on Smart Cards: Programming and
Security, number 2041 in LNCS, pages 6–24. Springer, 2001.

[33] Roel Wieringa and Jan Broerson. Minimal transition system
semantics for lightweight class and behaviour diagrams. In Manfred
Broy, Derek Coleman, Tom S. E. Maibaum, and Bernhard Rumpe,
editors, Proceedings PSMT’98 Workshop on Precise Semantics for
Modeling Techniques. Technische Universitaet Muenchen, TUM-
I9803, April 1997.

[34] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner H¨ahnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and System Modeling, 4(1):32–54, 2005.

[35] Alloy Homepage. http://alloy.mit.edu.
[36] D. Jackson. Alloy: A leightweight object modeling notation. In MIT

Laboratory for Computer Science: Cambridge, MA, 2000.
[37] 17. J. Spivey. The Z Notation. Prentice-Hall,1992.
[38] A. Evans, R. France, K. Lano, B. Rumpe. Devoloping the UML as a

Formal Modelling Notation. Available at
https://wwwbroy.in.tum.de/publ/papers/EFLR98b.pdf

[39] Siti Halimah Bakri, Hanis Harun, Amera Alzoubi and Rosziati
Ibrahim. THE FORMAL SPECIFICATION FOR THE
INVENTORY SYSTEM USING Z LANGUAGE, Proceedings of
the 4th International Conference on Computing and Informatics,
ICOCI 2013 28-30 August, 2013 Sarawak, Malaysia. Universiti
Utara Malaysia (http://www.uum.edu.my), Paper No. 064.

[40] Martin Giese and Rogardt Heldal. From Informal to Formal
Specification in UML, Chalmers University of Technology,
Gothenburg, Sweden. Available at
folk.uio.no/martingi/pub/uml04.pdf

[41] Farida Mostefaoui, Julie Vachon, Verification of Aspect-UML
models using Alloy, Workshop AOM ’07, March 12-13, 2007
Vancouver, British Columbia, Canada Copyright 2007 ACM 1-
59593-658-5/07/03... $5.00.

[42] Achim D. Brucker and Burkhart Wolff. A proposal for a formal
OCL semantics in Isabelle/HOL. In V.A Carren no, C. Mu noz, and
S. Tahar, editors, TPHOLS 2002, volume 2410 of LNCS, pages 99–
114. Springer-Verlag, 2002.

Bhaswati Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2713-2717

www.ijcsit.com 2717

