
Secure Analysis for Interval-based Algorithms

V.Jaya Ramakrishna,K.Nithin Babu,M.N.Satish Kumar

 Department of Computer Science & Engineering
 Gudlavalleru Engineering College , Gudlavalleru

Abstract-we consider several distributed collaborative key
agreement and authentication protocols for dynamic peer
groups. There are several important characteristics which
make this problem different from traditional secure group
communication.
They are: 1) distributed nature in which there is no
centralized key server; 2) collaborative nature in which the
group key is contributory (i.e., each group member will
collaboratively contribute its part to the global group key);
and 3) dynamic nature in which existing members may leave
the group while new members may join. Instead of
performing individual rekeying operations, i.e., recomputing
the group key after every join or leave request, we are going
to re key for a batch of join and leave operations.
The objectives of the project are to generate a group key.With
the help of the group key sharing the resources like accessing
the files and implement the Queue-batch algorithm, which
performs the best among the three interval-based algorithms
by comparing them. More importantly, to show that Queue-
batch algorithm can substantially reduce the computation and
communication workload in a highly dynamic environment

1. INTRODUCTION
The mainstay of the project is to collaboratively generate a
common key for peer to peer group communication. To
dynamically perform re-keying operation after batch of
joins or leaves using Queue Batch algorithm and to share
resources using the generated group key.
The purpose of the proposed system is to provide the
members of a group with secure common group key. This
group key is generated collaboratively wherein each node
becomes a part of the key generation.
The distributive nature of the proposed system, avoids the
usage of a centralized key server. The dynamic nature of
the system allows the existing members to leave the group
while new members can join, instead of performing
individual rekeying operations.
The system uses Queue-batch algorithm for re-keying. The
algorithm can substantially reduce the computation and
communication workload in a highly dynamic
environment. The group key is used for future
communication among the members of the group.
Other than Queue-batch algorithm we have Re-build
algorithm and Batch algorithm .but the last two algorithms
are not as effective as Queue –batch algorithm because
Queue-batch works more efficient than the other
algorithms at re-keying when no element leaves from the
group. ,i.e, the element which is entered newly is kept in a
Queue sub-tree phase and next the element is added to the
group when an element leaves through Queue.
In general the problems with the existing system are Key
information depends on centralized key server and
Computational and Communication cost is more.And when
coming to re-keying , Individual re-keying is done
Whenever a member joins or leaves in the case of

distributed key generation algorithm. More resources used
for re-keying because it is done for each join or leave
operations.
So to avoid these problems we use the Queue-batch
algorithm for re-keying. The algorithm can substantially
reduce the computation and communication workload in a
highly dynamic environment. The group key is used for
future communication among the members of the group.

2. SYSTEM STUDY
We consider several distributed collaborative key
agreement and authentication protocols for dynamic peer
groups. There are several important characteristics which
make this problem different from traditional secure group
communication. They are: 1) distributed nature in which
there is no centralized key server; 2) collaborative nature in
which the group key is contributory (i.e., each group
member will collaboratively contribute its part to the global
group key); and 3) dynamic nature in which existing
members may leave the group while new members may
join. Instead of performing individual rekeying operations,
i.e., recomputing the group key after every join or leave
request, we discuss an interval-based approach of rekeying.
We consider three interval-based distributed rekeying
algorithms, or interval-based algorithms for short, for
updating the group key: 1) the Rebuild algorithm; 2) the
Batch algorithm; and 3) the Queue-batch algorithm.
Performance of these three interval-based algorithms under
different settings, such as different join and leave
probabilities, is analyzed. We show that the interval-based
algorithms significantly outperform the individual rekeying
approach and that the Queue-batch algorithm performs the
best among the three interval-based algorithms. More
importantly, the Queue-batch algorithm can substantially
reduce the computation and communication workload in a
highly dynamic environment. We further enhance the
interval-based algorithms in two aspects: authentication and
implementation. Authentication focuses on the security
improvement, while implementation realizes the interval-
based algorithms in real network settings. Our work
provides a fundamental understanding about establishing a
group key via a distributed and collaborative approach for a
dynamic peer group.

3. CONVENTIONAL SYSTEM
The existing system involves either centralized key server
(in which all the systems depend on centralized server for
key generation), and individual rekeying is done for join or
leave operations in case of distributive key generation
algorithms. In case of individual re-keying, after every join
or leave operation each member individually rekey’s. More
resources are used for re-keying because it is done for each

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5265

join or leave operations. In case of using a centralized
server, the risk of single point failure is more.

 DRAWBACKS OF CONVENTIONAL SYSTEM
• Key information depends on centralized key server.
• Computational and Communication cost is more.
• Individual re-keying is done. Whenever a member

joins or leaves in the case of distributed key generation
algorithm.

• More resources used for re-keying because it is done
for each join or leave operations.

4. PROPOSED SYSTEM
The proposed system involves collaborative key agreement
in which all nodes become a part of the secure group key.
Moreover, rekeying is done after a batch of join or leave
operations. The protocol remains efficient even when the
occurrences of join/leave events are very frequent. Here Key
information does not depend on centralized key server. So it
is free from the problem of single point failure.
Computational and Communication cost is less. Resources
used for rekeying is minimized because it is being done for
batch of join/leave operations.
Group key agreement schemes:
Based on the Diffie-Hellman protocol [2], where all
arithmetics are performed in a group of prime order p with
generator a: the blinded key of node v can be generated by

The group key is generated in a shared and contributory
fashion and there is no single point of failure The
contributions of our work are:
The key agreement protocol is distributed in nature and
does not require a centralized key server.
The key agreement protocol is contributive – each member
contributes its part to the overall group key.
We illustrate that instead of performing individual rekeying
operations, one can use an interval-based approach to
significantly reduce the computation and communication
costs of maintaining the group key.
We propose three distributed interval-based rekey
protocols. and carry out qualitative and simulation-based
analysis to illustrate their performance merits.

TGDH: Group Key Generation

E.g., M1 generates the group key via:

 K7, BK8 K3
 K3, BK4 K1
 K1, BK2 K0 (Group Key)

TGDH: Membership Events
Rekeying (renewing the keys of the nodes) is
performed at every single join/leave
event to ensure backward and forward
confidentiality.

Cases for nodes Leaving and joining dynamically
TGDH: Single Leave Case

M4 becomes the sponsor. It rekeys the secret keys K2 and
K0 and broadcasts the blinded key BK2.

 M1, M2 and M3 compute K0 given BK2.
 M6 and M7 compute K2 and then K0 given BK5.

TGDH: Single Join Case

 M8 broadcasts its individual blinded key BK12 on

joining.
 M4 becomes the sponsor again. It rekeys K5, K2 and

K0 and broadcasts the blinded keys BK5 and BK2.
 Now everyone can compute the new group key.

 Description of Algorithms
In this subsection, we present three interval-based
distributed rekeying algorithms. They are the Rebuild
algorithm,the Batch algorithm and the Queue-batch
algorithm. The use of interval-based rekeying aims to
maintain good rekeying performance, independent of the
dynamics of joins and leaves. The three distributed
algorithms are developed based on the following
assumptions:

BK = aK"mod p

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5266

The key tree of TGDH is used as a foundation of all the
algorithms.
The rekeying operations are carried out at the beginning of
every rekey interval. There exists a virtual queue holding
all join and leave requests till the beginning of the next
rekey interval. When a new member sends a join request, it
should also include its individual blinded key. For
simplicity, all clients know the existing key tree structure
and they also know all the blinded keys within the tree
structure. The group members would elect sponsors to be
responsible for computing and broadcasting blinded keys.
To obtain the blinded keys of the renewed nodes (a node is
said to be renewed if it is a non-leaf node and its associated
keys are updated), the key paths of the sponsors should
contain those renewed nodes. Since the interval-based
rekey ing operations involve nodes lying on more than one
key paths, more than one sponsors may be elected. Also, a
renewed node may be rekeyed by more than one sponsor.
In this case, we assume that the sponsors can coordinate
with one another such that the blinded keys of all the
renewed nodes are only broadcast once.
We adopt the following notations for the three distributed
algorithms. Let T denote the existing key tree. Assume that
L 2 0 existing members M' = (Ad:, . . . , ML) wish to leave,
and J 2 0 new members ~j = (M;, . . . , M:) wish to join the
communication group within a rekey interval.
Rebuild Algorithm
The motivation for the rebuild algorithm is to minimize the
final tree height so that the rekeying operations for each
group member can be reduced. At the beginning of every
rekey interval: we reconstruct the whole key tree with all
existing members who remain in the group, together with
the newly joining members. The resulting tree would be a
cornplete tree. The pseudo-code of the Rebuild algorithm
to be performed by every member is shown below:

Rebuild (T. M ~ ,J , M', L)
1. obtain all members from T and store them in M ' ;
2. remove the L leaving members in M' from M ' ;
3. add the J new members in MJ to M ' ;
4. create a new binary tree T' based on members in M' and

set
T = T';
5. rekey the key nodes and broadcast the new blinded keys in

T ;
Figure illustrates the scenario that members Ad2, M5 and
M7 wish to leave the communication group and a new
member Ma wishes to join the group. The resulting key tree
has five members and all the nodes need to be renewed.
The sponsors will include all the five members.
M,,M,,M, leave
M l ~ M~ 3l 1 ~ j
M, M,

Batch Algorithm
The Batch algorithm is based on the centralized approach
in [6], except that we are now applying it to a distributed
system without a centralized key server and all clients
contribute to the composition of the group key. The
pseudo code of the Batch algorithm is given as:
Batch (T, M 3 . J , M', L)
I . i f (L = = O) { / * pure join case * /
2. create a new tree T' based on new members in M j ;

3. either (a) add T' to the shallowest node of T (which need not be
the leaf node) such that the merge would not increase
the height of the result tree, or (b) add T' to the root node of T if
the merge to any node of T would increase
the tree height:
4.)else { / * L > 0 * /
5. sort M' in an ascending order of the associated node IDS of the
members and store the results in M'." = (Mi", . . . , M i S) ;
6. i f (L 2 J) {
7. /* more members want to leave than join * /
8. if (J > 0)
9. replace the departed nodes of (Mi2', . . - , M$') with J loined
nodes;lo. i f (L - J > O)
{
1 I. remove remaining L - J leaving leaf nodes to the parent node:
12. promote the siblings of the leaving leaf nodes;
13 1
14) else {
15. /* more newly joining members than leaving members */
16. divide MJ into L subgroups G = (GI, . . . , GL) such that the fi
rst J mod L subgroups (G, . - . , GJ mod L) contain + 1 new
members and the rest contain new members;
17. create L subtrees (T;, . . . ,TL) for the subgroups G ;
18. replace the departed nodes of (Mi3', . . . , M:, .) with the roots
of (T l , . . . ,T; ,,, .) and the remaining departed nodes with the
roots of remaining subtrees;
19. elect the members to be sponsors if (1) they are new members,
or (2) the rightmost members of the subtrees rooted at the siblings
of the departed nodes or replaced nodes in T ;
20. if (sponsor)
21. rekey the key nodes and broadcast the new blinded keys;
Notice that the sponsors may have to wait for the blinded keys on
another key path in order to proceed upwards to rekey the nodes.
Finally, all the members obtain the necessary blinded keys to
compute the new group key KO.
The Batch algorithm is illustrated with two examples. In
Figure 5, we illustrate the case L > J > 0 of the Batch
algorithm. Suppose M2, M5 and M7 leave and a new
member Ma wishes to join. The following steps will be
carried out:
(i) Ma broadcasts its join request, including its individual

blinded key.
(ii) (ii) The leaf node 6 associated with M7 is replaced by

the node of Ma, and the leaf nodes 8 and 22 are
removed. Nodes 7 and 23 are promoted to nodes 3 and
I I , respectively. (iii) M1, M4, M6 and M8 are selected
to be the sponsors. M1 rekeys secret keys K1 and KO
and Mq rekeys K5, K2 and KO. Adl then broadcasts
BIC1 and M4 broadcasts BIG and BK2. M6 and though
having the sponsor role, do not need to broadcast any
blinded keys as M4 has already broadcast this
information. (iv) Finally, every member can compute
the group key based on the received blinded keys.

The Batch algorithm whereL> J>O
The case J > L > 0 of the Batch algorithm. Suppose Ma,
Ad9 and MIo join, and M2 and M7 leave. The rekeying
process is: (i) Ada, Mg, and Adlo broadcast their join
requests together with their own individual
blinded key. (ii) Ad8 and Mg form the subtree Ti and Mlo is
the only member of the subtree Ti. The root of
Ti replaces node 6 and the root of Ti replaces node 8. (iii)
The sponsors will be MI, Ad6, Adg and Adlo. (iv) M8 and
Ad9 first need to compute the secret key Kg, and either one
of them can compute and broadcast the new blinded key

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5267

BK6. (v) MI (or Mlo) rekeys I(3 and K1 and broadcasts BIG
and B K l . n/ls rekeys 1C2 and broadcasts BK2. (vi)
Finally, all the members can compute the group key KO.
The Batch algorithm
where J > L > 0
Queue-batch Algorithm
The previous approaches perform rekeying at the beginning
of every rekey interval, which can result in a high
processing load during the update instance and thereby
delay the start of the secure group communication. The
processing load includes the computation cost of the
exponentiation operations in generating the keys, as well as
the communication cost of broadcasting all the blinded
keys to all members in the communication group. We
propose a more effective algorithm which we call the
Queue-batch algorithm. The intuition of this algorithm is to
reduce the rekeying load by pre-processing the joining
members in the virtual queue during the idle rekey interval.
The Queue-batch algorithm is divided into two phases,
namely the Queue-subtree formation phase and the
Queuemerge
phase. The first phase occurs whenever a new member
joins the communication group during the rekey interval.
In this case, we append this new member in a temporary
key tree T'. The second phase occurs at the beginning of
every rekey interval and we merge the temporary tree T'
(which contains all newly joining members) to the existing
key tree T. Specifically:
Queue-subtree (T')
1. if (a new member joins) {
2. if (T' == NULL) / * no new members in T' * /
3. create a new tree T' with the only one new member;
4. else { / * there are new members in T' */
5. fi nd the insertion node;
6. add the new member to T';
7. elect the rightmost member under the subtree rooted at
the sibling of the joining node to be the sponsor;
8. if (sponsor)
9. rekey the key nodes and broadcast the new blinded keys
to the communication group;
lo. }
11. }
Queue-merge (T, T', M', L)
I . i f (L = = O) (/ * there are no leave * /
2. add T' to either (a) the shallowest node (which need not
be the leaf node) of T such that the merge would not
increase the resulting tree height, or (b) the root node
of T if the merge to any locations would increase the
resulting tree height;
3. } else / * there are leaves * /
4. add T' to the highest leave position of the key tree T ;
5. elect members to be sponsors if they are (a) the rightmost
member of the subtree rooted at the sibling nodes of the
departed
leaf nodes in T , or (b) the rightmost member of T';
6. if (sponsor)
7. rekey the key nodes and broadcast the new blinded keys
to the communication group;
The Queue-batch algorithm is illustrated in where members
Ma, Mg and Mlo wish to join the communication group,
while M2 and M7 wish to leave. Then the rekeying process

is as follows: (i) At the Queue-subtree formation phase, the
three new members &I8, Mg, and Mlo would first form a
tree T'. Mlo, in this case, will be elected
as the sponsor. (ii) At the Queue-merge phase, the tree T'
The Queue-merge phase
will be added at the highest departed position, which is at
node 6. Also, the blinded key of the root node of T', which
is BKs, is broadcast by Mlo. (iii) The sponsors, Mi, Ad6,
and Mlo, are elected. (iv) Ml rekeys the secret key IC1 and
broadcasts the blinded key BK1: M6 rekeys the secret key
K2 and broadcasts the blinded key BK2. (v) Finally, all
members can compute the group key.
Performance Evaluation
In this section, we present the mathematical analysis of the
three proposed algorithms. We consider two performance
measures, namely:
I . A~~eragileui nber of r e t ~we dn odes: a node is said to
be reriewed if it is a non-leaf node and its associated keys
are renewed. This metric provides a measure of the
communicatioii cost since new blinded keys of the renewed
nodes have to be broadcast to the whole group.
2. Average rzurnber of e~~orzetitiatioonp erations: this
metric provides a nieasure of the coinputation load for all
members in the communication group.
For simplicity, we assume the following in the analysis:
The existing key tree T is a completely balanced tree before
the interval-based rekeying event. Each member has a
homogeneous leave probability.
The number of blinded key computations simply equals
that of renewed nodes, provided that the blinded key of
each renewed node is broadcast only once. For the
mathematical analysis, let N be the number of members
originally in the system, L (where L 5 N) be the number of
members which wish to leave the system, and J > 0 be the
number of new members which wish to join the
communication group. Let T denote the existing tree which
contains N members. The level of a node v is 1 = Llog2(v+
I)], where v is the node ID, and the maximum level of T is
h. Based on the first assumption, we know that N = 2h.
Also, let Ralg be the number of renewed nodes and &,lg be
the number of exponentiations for the particular algorithm
alg. The performance measure Ea19 is composed of two
parts: &ilagnd &,big, which represent the number of
exponentiations of calculating the secret keys (which is
done by all members) and the number of exponentiations of
calculating the blinded keys (which is done by sponsors
only). We have Based on the last assumption. we know the
number of blinded key computations is In the following
analyses, we only consider the number of secret key
computations &,Sig .
Analysis of the Rebuild Algorithm
Given N, L and J, we can obtain the exact expressions for
the two performance measures RReblLainldd even if the
existing key tree T is not completely balanced originally.
The resulting number of members is N* = AT- L + J > 0.
Thus, the number of renewed nodes (i.e. the number of
non-leaf nodes) is For EReblLiid(Nf). we find that when
N* 5 1, ERebuild(Nf) = 0. If Nf E (2h'-1, 2h'] for hr > 1
where
h' = Llog2(Nf - 1) J + 1, we have &AebTLild(Nf=)
(number of members at level h') x h' + (number of members

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5268

at level h' - 1) x (h' - 1) - 2 (N* -2L'0gz(N*-1)J)(~log2(~-*
1)J + 1) + (N*- ~ (N * - ~ L ' o ~ z (~ ' - ~L)loJg)2)(N* -
1) J = NfLlog2(N* - 1)J +2~*-2(L'ogz(N*-l)J+l).

Analysis of the Batch Algorithm
In analyzing the performance of the Batch algorithm, we
consider the following five cases. Note that when L > 0, the
performance metrics will depend on the membership leave
positions and exact metrics cannot be obtained. Therefore,
whenever L > 0, we derive the expected performance
measures. We also define RaLga,,n d &,lg,, be the two
performance measures under condition c. We also adopt the
convention that the combination (:) equals 0 if n < 0, r < 0
or n < r. Due to limited space, readers can refer to [5] for
detailed mathematical derivation and results.
Analysis of Queue-batch Algorithm
The main idea of the Queue-batch algorithm exploits the
idle rekey interval to pre-process certain rekeying
operations.
When we compare its performance with the Rebuild or
Batch algorithms, we only need to consider the rekey
operations occurring at the beginning of each rekey
interval. When J = 0, Queue-batch is equivalent to Batch in
the pure leave scenario. For J > 0: the number of renewed
nodes in Queue-batch during the Queue-merge phase is
equivalent to that of Batch when J = 1. Thus, the expected
number of renewed nodes is - L, if J = 0 and L > 0 if J > 0
and L > 0. Also, the expected number of exponentiations
when J > 0 for Queue-batch is given by E [E~a t ch,LJ>=
o], i f J = O a n d L > O
EIEBatch.J=l and L>O] - + dJ: if J > Oand L > 0. (8)
For J > 0 and L > 0, assume the new subtree is attached to a
node at some level d. We first decrement d from
E[EBatchJ, =l and L>o] to exclude the secret key
computations of the leaf node which is now replaced by the
root node of the new subtree. We then add d J to account
for the secret key computations done by these new J
members. The value d is the level of the highest node that
has all its descendents departed. Instead of computing the
expected value of d, we can find the upper bound value of
d, which occurs when the leaving leaf nodes are evenly
distributed in the key tree. Thus, d is given by

Interval-based Distributed Rekeying Algorithms
 We can reduce one rekeying operation if we can

simply replace M5 by M8 at node 12.
 Interval-based rekeying is proposed such that rekeying

is performed on a batch of join and leave requests at
regular rekeying intervals. This improves the system
performance.

 We propose three interval-based rekeying algorithms,
namely Rebuild, Batch and Queue-batch.

 Sponsors are elected at every rekeying event. They
coordinate with each other in broadcasting new blinded
keys.

RebuildAlgorithm

 Intuition: Minimize the height of the key tree so that

every member manages fewer renewed nodes in the
subsequent rekeying operations.

 Basic Idea: Reconstruct the whole key tree to form a
complete tree.

 We can explore the situations where Rebuild is
applicable

Batch Algorithm:
 Intuition: Add the joining members to suitable

positions.
 Basic Idea:

 Replace the leaving members with the joining
members.

 Attach the joining members to the shallowest
positions.

 Keep the key tree balanced.

n Elect the sponsors who help broadcast
new blinded keys.

Batch – Example 1: L > J > 0

 M8 broadcasts its join request, including its blinded

key.
 M1 rekeys secret keys K1 and K0. M4 rekeys K5, K2 and

K0.
 M1 broadcasts BK1. M4 broadcasts BK5 and BK2

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5269

Batch – Example 2: J > L > 0

 M8 and M9 form a subtree T1’. M10 itself
forms a subtree T2’.
 M8 and M9 compute K6, and one of them
broadcasts BK6.
 M1 rekeys K3 and K1. M6 rekeys K2.
 M1 broadcasts BK3 and BK1. M6
broadcasts BK2.

Queue-batch
Example of Queue-merge

 T’ is attached to node 6.
 M10, the sponsor, will broadcast BK6.
 M1 rekeys K1. M6 rekeys K2.

M1 broadcasts BK1. M6 broadcasts BK2
Performance Evaluation
 Methods: mathematical models + simulation

experiments
 Performance Metrics:

 Number of renewed nodes: This metric
provides a measure of the communication
cost.

 Number of exponentiation operations: This
metric provides a measure of the computation
load.

Settings:
 There is only one group.
 The population size is fixed at 1024
users.

Originally, 512 members are in the group
Evaluation 1: Mathematical Models:

 Start with a well-balanced tree with 512
members.

 Obtain the metrics at different numbers of joining and
leaving member in a single rekeying interval.

 Queue-batch offers the best performance, and a
significant computation/communication reduction when
the group is very dynamic.

Evaluation 2: Simulation Experiments:
 Start with a well-balanced tree with 512 members.
 Every potential member joins the group with

probability pJ, and every existing member leaves the
group with probability pL.

 Evaluate the average / instantaneous metrics at
different join/leave probabilities over 300 rekeying
intervals.

Average number of exponentiations at different fixed join
probabilities:

Average number of renewed nodes at different fixed join
probabilities:

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5270

REFERENCE
1] Y. Amir, Y. Kim, C. N. Rotaru, J. L. Schultz, J.Stanton, and G. Tsudik,

“Secure group communication using robust contributory key
agreement,” IEEE Transactions on Parallel and Distributed
Systems,vol. 15, no. 5, pp. 468-480, May 2004.

[2] Y. Amir and J. Stanton, The Spread Wide Area Group Communication
System, Johns Hopkins University, Baltimore, MD, CNDS-98-4,
1998.

[3] G. Ateniese, M. Steiner, and G. Tsudik, “Authenticated group key
agreement and friends,” Proceedings of 5th ACM Conference
Computer and Communica- tion Security, pp. 17-26, Nov. 1998.

[4] S. Blake-Wilson, and A. Menezes, “Authenticated Diffie-Hellman key
agreement protocols,” Proceed- ings of 5th Annual Workshop on
Selected Areas in Cryptography (SAC’ 98), LNCS 1556, pp. 339-
361, Springer-Verlag, 1998.

[5] M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution system,” Proceed- ings of Advances in Cryptology
(Eurocypt’94), LNCS 950, pp. 275-286, Springer-Verlag, 1995.

[6] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information The- ory, vol. 22, no. 6, pp. 644-654,
1976.

[7] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and using a
partionable group communication service,” Proceedings of 16th
ACM Symp. Principles of Distributed Computing (PODC), pp. 53-
62, Aug. 1997.

[8] C. G. G¨unther, “An identity-based key exchange protocol,”
Proceedings of Advances in Cryptology (Eu- rocypt’89), LNCS 434,
pp. 29-37, Springer-Verlag, 1989.

[9] M. Just, and S. Vaudenay, “Authenticated multiparty key agreement,”
Proceedings of Advances in Cryptology (Asiacrypt’96), LNCS 1163,
pp. 36-49, Springer-Verlag, 1996.

[10] Y. Kim, A. Perrig, and G. Tsudik, “Communicationefficient group
key agreement,” Proceedings of 17th IFIP International Information
Security Conference (SEC’01), pp. 229-244, Nov. 2001.

[11] Yongdae Kim, Adrian Perrig, and Gene Tsudik, “Tree-based group
key agreement,” ACM Transac- tions on Information System
Security, vol. 7, no. 1, pp. 60-96, Feb. 2004.

[12] P. P. C. Lee, Distributed and collaborative key agree- ment protocols
with authentication and implementa- tion for dynamic peer groups,
M. Phil. Thesis, The Chinese University of Hong Kong, June 2003.

[13] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch re-keying
for secure group communications,” Proceedings of 10th International
World Wide Web Conference (WWW’10), pp. 525-534, Orlando,
FL, May 2001.

[14] A. Perrig, “Efficient collaborative key management protocols for
secure autonomous group communication,” Proceedings of
International Work- shop on Cryptographic Techniques and E-
Commerce (CrypTEC’99), pp.192-202, July 1999.

[15] S. Setia, S.Koussih, and S. Jajodia, “Kronos: A scalable group re-
keying approach for secure multicast,” Proceedings of IEEE
Symposium on Security and Privacy, pp. 215-228, May 2000.

[16] A. T. Sherman and D. A. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” IEEE Transactions
on Software Engineering, vol. 29, no. 5, pp. 444-458, May 2003.

V.Jaya Ramakrishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5265-5271

5271

