
Component-Based Software Development with
Component Technologies: An Overview

Jawwad Wasat Shareef#1, Rajesh Kumar Pandey*2
#Department of Mathematics and Computer Science, Rani Durgavati University,

Jabalpur, M.P., India
*University Institute of Computer Science and Applications, Rani Durgavati University,

 Jabalpur, M.P., India

Abstract— Component-based software development (CBSD) is
an approach in which large software systems are built by
assembling a set of previously developed software components
that can be independently deployed, configured, adapted and
connected together within appropriate software architecture.
The benefits of this technology include, a shorter development
time at a reduced cost with an increased degree of
interoperability, portability and maintainability which gives a
good prospect for this type of development.

This paper presents an overview of CBSD; major activities
involved in this process with an overview of most commonly used
component technologies that are applied for component-based
software development, along with their pros and cons. An
attempt has been made to compare these technologies based on
their functionality and mechanism, thus providing a roadmap to
a developer in selecting the appropriate technology as per the
requirements.

Keywords— Software component, Software Component Model,
Component-Based Software Development, EJB, CORBA, .NET.

I. INTRODUCTION

In Software Engineering the Component Based Software
Engineering (CBSE) plays an important role, by “building
systems from components”, which is adopted from other
reengineering fields, such as mechanical or electrical
engineering. In context of CBSE comes Component-Based
Development (CBD), which plays an important role in
Software engineering. Main task of CBD is to build systems
comprising of already built software units or components, thus
promoting reuse concepts in CBD. This reuse concept reduces
production cost as well as saves time by composing a system
from prebuilt or existing components, instead of building
them from scratch, these already prebuilt components can be
reused in many systems.

The benefits that can be gained using CBD technology are
increased reuse, reduced production cost and shorter time to
market, which after much effort have been sought by software
industry. To realize these benefits, it is necessary to have
components that can be easily reused and using composition
mechanism can be applied in a systematic way. As component
based software engineering is based on the concept of

component. We can find different definitions of component in
a literature. An early and most commonly used definition
proposed by Szyperski et. al., [1] is as follows:

“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition
by third parties”.

The most important aspect of software component is
reusing them in building large systems. When a component is
deployed and executed after installation in different systems,
it has to maintain its functionality. Components should be
constructed in such a way that it must be possible to connect
to a software component at run-time or dynamically; therefore
a component is stated to be independently deployable. This
approach maximizes the utilization of resources, thus giving
the developer an option to use the components as and when
required.

II. COMPONENT-BASED SOFTWARE DEVELOPMENT

PROCESS

The term Component-Based Software Development
(CBSD) is an appropriate and methodical approach, which
involves the construction of an application by using prebuilt
chunks, which were developed at different times, by different
humans, and possibly with different concept and uses in mind
[2]. Brown [3] stated four activities in component-based
development approach:

 component qualification
 component adaptation
 assembling components
 system evolution

In the following subsections we discuss the above defined

activities in some more detail.

A. Component qualification

It is a process of understanding whether a component
which has been previously developed is suitable for reusing in
target system. In a market place where number of prebuilt-
components exists, then through this process components can

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3029

also be selected. The component qualification factors like
standards based on reliability, predictability, usability,
functionality, services that a component is providing should
be considered.

B. Component adaptation

As the components are developed at different times, by
different humans, and possibly with different concepts and
requirements in mind. When these components are reused in a
new system they must be adapted based on rules that ensure to
minimize the conflicts between them. These conflicts can be
avoided by applying adaptation technique called component
wrapping [4]. Roger S. Pressman [5] defined wrapping
approaches for component adoptions like:
 White-box wrapping examines the internal processing

details of the component and makes code level
modifications to remove any conflict.

 Gray-box wrapping is applied when the component
library provides a component extension language or API
that enables conflicts to be removed or masked.

 Black-box wrapping requires the introduction of pre and
post processing at the component interface to remove or
mask conflicts.

C. Assembling components

Assembling of components is done by using some well
defined infrastructure, which helps in binding these
components different from one another, thus forming a system.
Component definition given by Heineman and Councill’s [6]
states that:

“A [component is a] software element that conforms
to a component model and can be independently
deployed and composed without modification
according to a composition standard”.

which means a standard is needed to make the components
work together. Major companies have defined standards for
building components and some well known standards include
Sun Microsystem’s Javabeans and Enterprise JavaBeans
(EJB), Microsoft’s .NET and Object Management Group’s
(OMG) Corba Component Model (CCM) .

D. System evolution

System evolution plays an important role in order to meet
business needs; it is like the process of replacement of old
version or outdated components with new versions. To
manage different versions of components and their impact on
the applications which they are part of [7]. System evolution
can be viewed as treating components in the form of plug-
replaceable units.

III. COMPONENT-TECHNOLOGIES

There are many different component technologies widely
used as per their applying requirements. Some of the most
used technologies today are the Enterprise Java Beans (EJB)
by Sun Microsystem’s, CORBA by the Object Management
Group (OMG), and .NET from Microsoft. These technologies
will be described in detail in the following subsections.

A. Enterprise Javabeans (EJB)

Enterprise Javabeans (EJB) is a component developed in
the Programming language Java. EJB is designed for inter-
process components [8] as shown in Fig.1. Sun Microsystems’
definition of Enterprise JavaBeans is:

“The Enterprise JavaBeans architecture is a component
architecture for the development and deployment of
component-based distributed business applications.
Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure. These applications may be written once, and
then deployed on any server platform that supports the
Enterprise JavaBeans specification”.

EJB’s are server side software components [9] that can be
deployed in a distributed multi tired environment. All EJB’s
must be hosted in a container (an EJB container can be a part
of an application server) to be of any use. Furthermore, all
EJB’s must be written in the Java programming language.
This gives high security and stability, and access to most
features of Java. For instance, if a thread dies in a Java
application, the application will still keep on running. There
are no problems with pointers when using Java, which reduces
the number of memory leaks. Java has an extensive and well
tested library, and it is also platform independent. An EJB can
compose one or more Java objects since a component can be
more than just an object. Enterprise JavaBeans has proved to
be the best solution which is applied for component
development environment [10].

Fig.1 Enterprise JavaBeans [8]

No matter how an EJB is built, the same component
interface is always used [9]. Both the EJB and the interface
must follow the EJB-specification, which requires EJB’s to
expose certain methods that must be included. These methods
allow the container to handle EJB’s uniformly, no matter what
container the EJB’s are hosted in.

1) THE EJB TECHNOLOGY: There are three types of
EJB’s [9] that can be used, all with different features. The
three bean types are:

 Session beans (SB). This bean models a business process. It
can be compared to a verb, because like a verb it is doing
something. The things that it does can consist of

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3030

calculations, connections to data bases or to other EJB’s etc.
A SB can be either stateless or stateful.

 Entity beans (EB). Opposite to a session bean, an entity
bean models business data. EB’s are similar to nouns in that
they are data objects, like a product, an order, an employee,
a credit card, a storage, etc. To be able to perform its task,
all EB’s are persistent. A SB usually harnesses an EB to
achieve business goals. An example can for instance be a
stock trading system where a stock trading engine is dealing
with stocks. In this example the stock trading engine is the
SB and the stocks are represented by one or more EB’s.

 Message-driven beans (MB). Message driven beans are
similar to session beans in that they do something. The
difference is that a message driven bean can only be called
by using messages.

The reason for having three types of beans is because
several businesses have been involved in the development of
the EJB standard. The three bean types are a result of different
requirements stated by those businesses. The requirements are
based on the technologies they use and on their respective
types of distributed systems. Having SB’s, EB’s and MB’s
provide maximum flexibility to support the different
requirements.

EJB allows development of reusable components [11], this
can be understood with the help of example where a credit
card-charging module has been implemented as EJB
component that is accessed by multiple applications as shown
in Fig. 2.

Fig. 2 EJB Component reusability [11]

The EJB architecture is a standard component server side
architecture that is mainly used for server side development
for building distributed object-oriented business applications
in the Java programming language thus supporting the
development, deployment, and use of web services in a
layered architecture pattern[10]. Layered architecture implies
the concept of components that are grouped into different
levels, each level in the application serves a specific purpose.
Each level in the application has a well-defined purpose, sort
of like a section of a factory assembly line. Each section of the
assembly line performs its designated task and passes the
remaining work down the line.

EJB supports two types of layered architectures for
developing applications – the domain-driven design (DDD)

and the traditional four-tier architecture. The traditional four-
tier server architecture is presented in this paper taken from
[11] as shown in Fig. 3. In this architecture services for
graphical user interface (GUI) and handling user input are
offered by the presentation layer, thus passing down each
request for application functionality to the next layer i.e.
business logic layer. The business logic layer contains work
flow and processing logic; it retrieves data from and saves
data into the database by making use of persistence level. The
business logic layer can perform some actions like billing,
ordering, and maintenance of user account, etc. The
persistence layer is responsible for providing high-level
object-oriented (OO) abstraction over the database layer. The
database layer consists of a relational database management
system (RDBMS) like DB2, Oracle, MySQL, SQL Server,
INGRES.

Fig. 3 Traditional Four Tier-Server Architecture [11]

Using EJB architecture it is possible to build applications
by combining components developed using tools from
different vendors and provide interoperability between
enterprise beans and J2EE components as well as non-Java
programming language applications [12]. EJB provides strong
support for implementing the business logic and persistence
layers. EJB servers give a bunch of services, so that we don’t
have to write them ourselves [13]. Fig. 4 represents some
supporting services with in different layers like security,
transaction management, concurrency, networking, resource
management, persistence and messaging etc.

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3031

Fig. 4 Services provided by EJB in different layers

2) ADVANTAGES AND LIMITATIONS OF EJB [14]

 Pros Cons

 EJB is a standard and
probably the simplest
server-side development
platform around. The
features that shine the
brightest are POJO
programming, heavy use of
sensible defaults, and Java
persistence API etc [11].

 Learning EJB systema-
tically is difficult. Using
EJB in a wrong way may
lead to poor presentation.

 EJB is based on Java
programming language.
Thus inheriting all
advantages of Java, like
Java does not have concept
of pointers, garbage
collector is present, memory
leaks are virtually none.

 EJB is based on Java
programming language. All
disadvantages that Java has
also exist in EJB.

 The EJB container handles
beans uniformly as the
beans are hosted in
container thus providing
communication handling,
security, pooling. The
developer time is saved in
developing these features.

 To fully utilized containers
computer system with
higher end is required, or it
may result in low
performance.

 Component reliability and
stability increases as threads
are not used in beans, due to
which programming are less
complex.

 Threads have certain
advantages and helps in
solving certain tasks, but
threads are not used in a
bean.

 EJB technology has an
added advantage of having
Message driven beans.

 Security cannot be applied
to Message driven beans.

 EJB having equipped with
three beans is very flexible.

 In EJB every session bean
consists of at least three
Java classes, while every
entity bean comprises at
least four. Some standard
and possibly vendor-
specific deployment desc-
riptors are needed. Here

coding time can be reduced
by some auto generation
tools, thus restricting to a
particular vendor [15].

B. CORBA

The Common Object Request Broker Architecture
(CORBA) was proposed by the Object Management Group
(OMG) as a standard for communication between components.
CORBA is a standard for writing object oriented distributed
systems [9]. This standard is platform independent. It forms
part of a larger model, Object Management Architecture
(OMA) that defines at a high level of abstraction a context
within which components operates and interacts, including
standard services that components can rely on [16].

1) CORBA TECHNOLOGY: CORBA is widely used in

component-based software systems because it offers a
consistent distributed programming and run-time environment
over common programming languages, operating systems,
and distributed networks [17]. That means software written in
java, C++ etc. that may be running on different operating
systems, can be transparently integrated with each other. The
Object Request Broker (ORB) is the most important part of a
CORBA system [17]. Client server relationship between
components is established by ORB which acts as middleware.
Fig. 5 illustrates the architecture of remote invocation with
ORB [18]. With the help of ORB a method can be invoked by
a client, whose location is completely transparent. The ORB
performs the task of intercepting a call and finding an object
that can implement the request, pass its parameters, invoke its
method and return the results. The client does not need to
know where the object is located, its programming language,
its operating system, or any other system aspects that are not
related to the interface. Thus interoperability is provided by
ORB to synchronize applications on different machines in
various distributed environments and truly interconnects
multiple object systems.

Fig.5 Remote Invocation in CORBA [18]

2) ADVANTAGES AND LIMITATIONS OF CORBA [14]

 Pros Cons

 It is a standard for writing
object oriented distributed
systems [9]. This standard
is platform independent.

 There is a long time span
between updates, taking years
for a new version release. If
there is a bug in CORBA,
risk is that it will stick around
next release.

 A standardized way of
connecting and using

 Learning CORBA is difficult,
especially when there are

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3032

components through
interfaces.

other technologies that can do
what is requested and are
easier and faster to learn.

 It consists of numerous
features for developing
products.

 Products that are developed
in CORBA may have
incompatible features.

 CORBA appears to be
reliable.

 CORBA does not support all
of the reliability evaluation
criteria [19].

 CORBA’s flexibility gives
the developer a countless
number of choices.

 These choices require a vast
number of details to be
specified which increases the
complexity too high to be
able to do so efficiently and
quickly [20].

C. .NET

The name .NET is used by Microsoft to denote a
comprehensive set of new technologies. This includes a new
component model, intended to replace COM/DCOM. A
notable development is that .NET moves the responsibility of
providing certain functionality from the components to a more
sophisticated run-time system. In particular, COM/DCOM
requires components to provide a considerable amount of
“house-keeping” functionality that is taken care of by
the .NET run-time. Much of the flexibility that follows from
having such implementations in each component is
maintained under .NET, where components can affect the
operation of the run-time by setting declarative attributes [21].

.NET has been tailored in such a way that practically any
programming language should be able to be compiled
for .NET. This can be possible because a common base has
been defined in .NET, which is the Intermediate Language (IL)
[22]. When a developer compiles a .NET application or
component etc. it is compiled to IL-code, which is interpreted
by the CLR (Common Language Runtime) when running the
application, or using the component, the CLR is the control
centre of .NET. The .NET applications are virtually
programming language independent, and to some extent
platform independent as well. As long as the programming
language is compiled to IL-code, it will work with the .NET
environment. The .NET environment can be ported to other
platforms other than Windows, to achieve platform
independence like in Java.

1) .NET TECHNOLOGY: The heart of .NET is the CLR
[23], as it contains a number of JIT-compilers (Just-In-Time
compilers) that compile IL-code to native code. Fig. 6 shows
how the CLR controls the .NET architecture.

Fig. 6 The .NET Architecture [23]

When a .NET program is generally compiled it is compiled
to a processor-independent one or more files consisting of IL-
code [22]. The application is not compiled to native code until
it is actually run. One of the JIT compilers which are part of
the CLR handles the compilation automatically. All code that
requires the CLR to be able to run is called managed code.
The execution model of .NET can be well understood with the
help of Fig. 7 which illustrates the running and compilation of
a .NET application [22].

Fig.7 The .NET program execution model [22]

To save time during start-up of an application only the
needed portions of the application is compiled by the CLR.
When another part is needed, it is compiled at that time. Once
some part of the application is compiled, its executable is
cached until the application is closed. That way it does not
have to be recompiled when it is in use [23]. The caching and
the fact that only needed portions of the application are
compiled make running and using a .NET application almost
as fast as running a traditional executable.

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3033

Due to JIT-compilation the .NET applications are not that
much faster compared to traditional applications even if it is
close, there are large benefits by having the CLR compile the
application each time it is run. The executable created by the
CLR can be optimized for the platform hosting the CLR, and
the application. The CLR checks all IL-code before it is
compiled this increases the level of security as illegal actions
can be prevented before they even get a chance to be executed.
Besides from security and cross-language integration, CLR
also handles versioning and deployment support, debugging
and profiling services and memory management. A feature
of .NET is that memory is automatically freed by a so called
garbage collector when not in use anymore [23].

2) ASSEMBLIES: Assemblies are used for the building
of .NET applications [23]. For a .NET application to work, all
its classes must reside within one or more assemblies. All
.NET components are stored in assemblies as well. They are
however not components themselves, but can contain one or
more of them [22, 23]. Assemblies can be stored in different
ways other than in just an ordinary file, and should therefore
rather be thought of as logical units than physical ones. The
assembly is normally represented by files with the extension
.exe or .dll. Both these file-types are structured in the same
way, only the .exe-file has a startup sequence so the CLR
knows how to start its execution [22]. An assembly provides
the CLR with the information it needs to be aware of type
implementations.

3) METADATA: Each component that is stored in an
assembly, and also the assembly itself, has its own metadata
[22, 23]. The metadata has a specific post for storing the
version of the component. In the metadata, information is
saved about each file that belongs to the assembly. If the
assembly is divided into more than one file and one of those
files where altered or replaced, the assembly would probably
fail to load, since the saved information did not match the file
information in the altered or new file. The manifest file of an
assembly contains the metadata of that assembly, and it can be
stored in an .exe-file or in a .dll-file [23].

3) ADVANTAGS AND LIMITATIONS OF .NET [14]
 Pros Cons

 .NET can be integrated in
Windows operating system,
giving high performance.

 .NET having its dependency
mostly over Windows
operating system may not
work as well in other operating
systems.

 .NET is safe, secure, faster
and reliable for enterprise
applications.

 From operational point of view
the capacity and ongoing cost
to support .NET is higher.

 Run-time system is reliable.  .NET being a sophisticated
run-time system, possibly with-
out using much of its
functionality, may lead to
unnecessarily large software.

 Support for any program-
ming language modification
is done through IL-code so

 Adapting to IL-code features,
programming languages may
lose features that made the

that applications developed
in that language can work
as .NET applications.

language unique.

 CLR being a part of .NET,
all applications work
through it, that way security
is improved.

 .NET applications take longer
time to startup, because each
time an application must be
compiled before it is run.

 .NET supports multiple
languages such as Visual
Basic.NET, C# (pronoun-
ced as C-sharp),
Jscript.NET and Managed
C++ (a dialect of Visual
C++). The beauty of multi
language support lies in the
fact that even though the
syntax of each language is
different, the basic capa-
bilities of each language
remain at par with one
another [13].

 Future directions are deter-
mined by Microsoft means any
application built on .NET using
supporting languages are
committed and dependent on
Microsoft as license costs
continue to increase with the
enhanced restrictions in terms
of use [13].

Table-1 describes the functionality and mechanism of each

component technology. The Name Service provides a
convenient way to find the component implementation
associated with a particular public name. But its greater
significance is that it allows an application to use multiple
different implementations of a component at one time [23].

Remote communication in .NET uses its own self-hosted
server, the result may vary depending on what container is
used. Different vendors of EJB containers most likely have
different ideas of how things should be done, like what
algorithms are used for handling instance pooling, or what
policies are best regarding security or lifetime management. In
some cases, a container may not even support certain features
of the EJB technology [14].

The execution semantics of an invoked component

operation describes the context in which that operation
executes: it could execute in the caller’s thread or the callee’s
(component’s) context, where there could be one thread
reserved for each caller, or new thread could be used for each
operation invocation [23].

A component interface is important for determining the

scope of a component, all models have interfaces with EJB
having explicit java interface, CORBA has language
independent Interface Definition Language and .NET has
explicit language interface.

Granularity of component, for granularity the question is

whether a component is a single class, a single package, or a
set of packages. In EJB and .NET the granularity of
component is EJB uses EJB-jar files, and .NET uses the
Assembly DLL. For CORBA the typical scope and granularity
of a component is less clear. It is often treated like a COM
component, but given the complete lack of guidance, any of
the choices is possible [23].

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3034

TABLE-1: COMPARISON OF COMPONENT TECHNOLOGIES [14] [23]

 EJB CORBA .NET

Functionality
Name Service public name public name public name
Remote communication Transparent transparent Transparent
Execution semantics of invoked
component operations.

dictated by bean type
(entity, session,
message beans)

one thread per
invocation;
executes in
component
context

various choices

Mechanism
Interface specification explicit java interface language-

independent IDL
explicit language
interface

Granularity of component EJB-jar file various Assembly DLL file
Component packaging standards EJB-jar file none Assembly DLL file
Technology integration EJB technology

integrates well with
CORBA.

CORBA and
EJB can be
integrated with
each other.

.NET applications can
use CORBA, but it is
not as well integrated
as in the EJB
technology.

Table-1 summarizes key features of Component models (EJB, CORBA, .NET) [14] [23

The lack of a standard for packaging (preparing and
delivering) creates ambiguity about the granularity of a
component: in some cases multiple granularities are possible,
and in other cases it simply causes confusion. In EJB
and .NET there is a packaging standard that specifies a
deployable unit: EJB uses EJB-jar files, and .NET uses the
Assembly DLL [23].

The EJB technology is in fact based on CORBA concepts.

EJB and CORBA can be integrated with each other [14].

IV. CONCLUSIONS

Component Based Software Development is the latest
advance [6] in software development, promising the
possibility of extending the real world approach to create
well-specified parts and top incorporate legacy code “wrapped”
as components. Affordability, simplicity, reliability,
adaptability, reduced workload are the major scores for its
success.

An attempt has been made to give a clear overview of
component-based software development, by discussing some
major activities involved in CBSE. Three main technologies
used for CBSD along with their advantages and limitations are
discussed in this paper like EJB, CORBA, .NET covering in
depth as they are more popular in software industry. A
comparison of these technologies based on functionality and
mechanism is conducted which will definitely provide the

reader an in depth understanding and guidance in selecting
these technologies for CBSD.

V. REFERENCES
[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond

Object-Oriented Programming, second ed. Addison-Wesley, 2002.
[2] J.W. Shareef, Component-Based Software Development: An

Appropriate and Methodical Approach, International Journal for
Electro Computational World Knowledge Interface, Vol.1, Issue 5, Jan.
2012, ISSN No. 2249-541X.

[3] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger,
W. Pree, M. Stal and C. Szyperski, “What Characterizes a Software
Component?” Software—Concepts and Tools, vol. 19, no. 1, pp. 49-56,
1998.

[4] Brown, W. Alan & C. Kurt Wallnau, "Engihttp://cbs.colognet.org/
overview.php Engineering of Component-Based Systems," 7-15.
Component-Based Software Engineering: Selected Papers from the
Software Engineering Institute. Los Alamitos, CA: IEEE Computer
Society Press, 1996.

[5] Rogers, S. Pressman, Ph. D., “Software engineering- Practitioner´s
approach” 5th Edition, McGraw-Hill series in computer science, 2001.

[6] G.T. Heineman, and W.T. Councill, Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, May 2001.

[7] M. Casanova, R.V.D. Straeten, and V. Jonckers, Supporting Evolution
in Component-Based Development using Component Libraries.
http://distrinet.cs.kuleuven.be/projects/ SEESCOA/publications/Casan-
-ova.pdf, last access: 26-12-11.

[8] Monson-Haefel Richard, Enterprise JavaBeans, O’Reilly, 2001.
[9] E. Roman, S. Ambler, T. Jewell, Mastering Enterprise Java Beans

Second Edition, Wiley Computer Publishing, 2002.
[10] L. DeMichiel, Sun Microsystems, Enterprise JavaBeans™

Specification, Version 2.1, Sun Microsystems, pp.1-635, 2002.
[11] P. Debu, R. Reza and L. Derek, “EJB 3 in action”, Manning

publication, 2007.

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3035

[12] M.H. Selamat, H. Sanatnama, A.A.A. Ghani and R. Atan, Software
Component Models from a Technical perspective. IJCSNS
International Journal of Computer Science and Network Security,
VOL.7 No.10, pp.-135-147, October 2007.

[13] S.A. Khan, W. Hussain, Component Based Software Development
with EJB and .NET, Mälardalen University, Department of computer
science and electronics Västerås –Sweden, 2008.

[14] J. Persson, Comparison of Enterprise Java Beans and .NET from a
Component Point of View, Master Thesis, Software Engineering,
Thesis no.MSE-2003:29, pp.1-98, 2003.

[15] H. Sheil, “To EJB, or not to EJB?” http://www.javaworld.com/
javaworld/jw-12-2001/jw-1207-yesnoejb.html?last access: 27-12-2011.

[16] P. Cox, B. Song, “A Formal Model for Component-Based Software”,
IEEE 2001 Symposia on Human Centric Computing Languages and
Environments, Stresa, Italy, September 05 - 09, 2001.

 [17] C. Xia, LYU R. Michael, W. Kam-Fai, K.O. Roy, Component-Based
Software Engineering: Technologies, Development Frameworks, and
Quality Assurance Schemes, http://www.cse.cuhk.edu.hk/~lyu/paper
_pdf/apsec.pdf, last access: 15.09.2011.

[18] ÖZYURT Barış, Enforcing Connection-Related Constraints And
Enhancements On A Component Oriented Software Engineering CASE
Tool, Master Thesis. 2003.

[19] J. Guo, Y. Liao, Assessment of Component-Based Systems with
Distributed Object Technologies, http:// ww1.ucmss.com/books/LFS/
CSREA2006/SER3741.pdf, last access : 25-12-2011.

[20] OMG, “CORBA Components,” Report ORBOS/99-02-01, OBJECT
MANAGEMENT GROUP, 1998, http://www.omg.org.

[21] F. Lüders, Use of Component-Based Software Architectures in
Industrial Control Systems, Thesis, pp.-117, 2003.

[22] S. Robinson et.al, Professional C# 2nd Edition, Wrox, 2002.
[23] C. James, Introducing dotNET, Wrox, 2000.
[23] Jr. W. DePrince, C. Hofmeister, System Design, Development, and

Maintenance, Proceedings of the 3rd Working International Conference
on Software Architecture, August 2002, pp. 205-219, 2002.

Jawwad Wasat Shareef et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3029 - 3036

3036

