

Comparison study between Traditional and Object-
Oriented Approaches to Develop all projects in

Software Engineering

Nabil Mohammed Ali Munassar
PhD Scholar in Computer Science & Engineering

Jawaharlal Nehru Technological University Hyderabad
Kuktapally, Hyderabad- 500 085, Andhra Pradesh, India

Dr. A. Govardhan

Professor of Computer Science - Engineering
& School of Information Technology

Jawaharlal Nehru Technological University Hyderabad
Kuktapally, Hyderabad- 500 085, Andhra Pradesh, India

Abstract— Here in this paper we explore comparative study to
analyze the performance differences between Traditional
software development models and Object-Oriented approach.
Traditional approaches like waterfall, spiral lack flexibility to
deal with object oriented models. The approach of using object –
oriented techniques for designing a system is referred to as object
oriented design. Object oriented development approaches are
best suited to projects that will imply systems using emerging
object technologies to construct, manage, and assemble those
objects into useful computer applications. Object oriented design
is the continuation of object- oriented analysis, continuing to
center the development focus on object modeling techniques.

Keywords-Software Engineering, Traditional Approach, Object-
Oriented Approach, Analysis, Design, Deployment.

I. INTRODUCTION
All software, especially large pieces of software produced

by many people, should be produced using some kind of
methodology. Even small pieces of software developed by one
person can be improved by keeping a methodology in mind. A
methodology is a systematic way of doing things. It is a
repeatable process that we can follow from the earliest stages
of software development through to the maintenance of an
installed system. As well as the process, a methodology should
specify what we’re expected to produce as we follow the
process. A methodology will also include recommendation or
techniques for resource management, planning, scheduling and
other management tasks. Good, widely available
methodologies are essential for a mature software industry.

A good methodology addresses the following issues:
Planning, Scheduling, Resourcing, Workflows, Activities,
Roles, Artifacts, Education. There are a number of phases
common to every development, regardless of methodology,
starting with requirements capture and ending with
maintenance. During the last few decades a number of software
development models have been proposed and discussed within
the Software Engineering community. With the traditional
approach, you’re expected to move forward gracefully from
one phase to the other. With the modern approach, on the other
hand, you’re allowed to perform each phase more than once
and in any order. [1, 10].

The rest of the paper organized as fallow
Section II explored the procedural and object oriented software
development models. Section III revealed the research
methodology to conduct comparative study, in section IV the
analysis of the comparative study carried out. Section V
contains conclusion that fallowed by references.

II. SOFTWARE DEVELOPMENT MODELS

A. Structural or Procedural software development
models
In structural software development models such as

water fall, initially the project team analyses, then
determining and prioritizing business requirements and
needs. Next, in the design phase business requirements are
translated into IT solutions, and a decision taken about
which underlying technology i.e. COBOL, Java or Visual
Basic, etc. etc. is to be used. Once processes are defined
and online layouts built, code implementation takes place.
The next stage of data conversion evolves into a fully
tested solution for implementation and testing for
evaluation by the end-user. The last and final stage
involves evaluation and maintenance, with the latter
ensuring everything runs smoothly.

The systems development life cycle (SDLC) can be
defined as a process of understanding how an information
system can support business needs or requirements of an
organization, modeling the business processes, designing
the systems components, and building the system. A
systems development project thus goes through a sequence
of four fundamental phases: planning, analysis, design,
and implementation. Each of these phases also consists of
a series of steps or activities that rely on some techniques
to produce required deliverables. Even though all projects
cycle through some common phases or activities, but how
they are approached by the systems development group
can be different – the project team might move through the
phases and steps logically, consecutively, incrementally, or
iteratively [5].

B. Object Oriented software development models
The object-oriented (OO) approach follows an

iterative and incremental approach to systems
development. The systems development life cycle is

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3022

viewed as consisting of several increments or phases:
inception, elaboration, construction, and transition [5]. In
each increment or phase, the developers move through the
activities of gathering requirements, analyzing the
requirements, designing the system, implementing the
design, and testing the system. See Figure 2. Thus the
phases of the traditional systems development approach do
not match with those of the OO life cycle; but in each
increment, all phases of the traditional life cycle
(requirements, analysis, design, implementation, testing)
are visited iteratively until the developers are satisfied.
However, there are times when one activity predominates
over the other four – causing the systems development
effort to move from the inception to elaboration, then
elaboration to construction, and from construction to
transition.

The object-oriented approach uses a set of
diagramming techniques known as the Unified Modeling
Language or UML [1]. It focuses on the three architectural
views of a system: functional, static, and dynamic. The
functional view describes the external behavior of the
system from the perspective of the user. Use cases and
use-case diagrams are used to depict the functional view.
The static view is described in terms of attributes,
methods, classes, relationships, and messages. Class-
responsibility-collaboration (CRC) cards, class diagrams,
and object diagrams are used to portray the static view.
The dynamic view is represented by sequence diagrams,
collaboration diagrams, and state charts. All diagrams are
refined iteratively until the requirements of the information
system are fully understood. Finally, the information
system is developed through a combination of traditional
relational database and object-oriented programming –
rather than true object-oriented methodology for both
programming and database.

III. RESEARCH METHODOLOGY FALLOWED FOR

PERFORMANCE ANALYSIS OF THE TRADITIONAL

OBJECT ORIENTED SOFTWARE DEVELOPMENT

PROCESS MODELS
Software development is a highly complex field with

countless variables impacting the system. All software systems
are imperfect because they cannot be built with mathematical
or physical certainty. Bridge building relies on physical and
mathematical laws. Software development, however, has no
laws or clear certainties on which to build. As a result, software
is almost always flawed or sub-optimized. The author’s study
will provide the opinion of software developers on various
aspects of developing a software development model such as:
development time, Project complexity, Implementation
challenges, Extensive and accurate documentation, Return on
investment for minimal initial capital expense etc. Almost no
software system is so simple that the development can be
entirely scripted from beginning to end. The inherent
uncertainty and complexity in all software projects requires an
adaptive development plan to cope with uncertainty and a high
number of unknown variables.

1 Overview
The basic objective of this section is concerned about:

To study and analysis of different software development
models which are being used by the software developers in
software organizations. As there are a lot many models, which
are being used like Code and fix model, Waterfall model, V-
process model, Prototyping model, Spiral model and RAD
model etc. To decide which model is more appropriate and
suitable with respect to different software metrics, development
time, complexity, implementation challenges, return-on-
investment with minimal initial capital expenses, development
cost etc. In order to find out the above mentioned software
metrics research methodology was designed which is explained
in the next section.

A software development process is a structure
imposed on the development of a software product. There are
several models for such processes, each describing approaches
to a variety of tasks or activities that take place during the
process. The most important aspect of a software development
is its development, as it undergoes a number of development
stages (software development life cycle) to reach to its final
shape. The development steps, which need to be followed for
developing software, project are- Project Planning, feasibility
study, Requirement analysis, design etc. However the most
important aspect of software development is the system design.
There are several different approaches to software
development, much like the various views of political parties
toward governing a country. Some take a more structured,
engineering-based approach to developing business solutions,
whereas others may take a more incremental approach, where
software evolves as it is developed piece-by-piece. Most
methodologies share some combination of the following stages
of software development: market research, analyzing the
problem, implementation of the software, testing the software,
deployment, maintenance and bug fixing [1].

2 Methodologies

In order to collect data from different organizations
the author used two methods primary as well as secondary. The
primary method will be collected through the close-end
structured questionnaire. The secondary method will be
collected by studying the documents from various
organizations, established procedures, guidelines etc The First
method selected to reach to goal will be questionnaires to
measures the impact of lifecycles on the factors that influence
the outcomes of software project. Questionnaire was designed
on various aspects like software metrics, development time,
complexity, implementation challenges, return-on-investment
with minimal initial capital expenses, development cost etc.

As a complement of the comparative study analysis,
interviews of project managers working in different companies
were conducted to understand what type of methodologies are
in use and what the most relevant aspects were found in
developing software models.

3 Scalability of the information collection approach

Volunteers spent major part of their time in
developing software (60%), and the next major part of time is
spent as Technical Advisors in organizations.

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3023

Most of volunteers have more than ten years working
experience, whereas while only small number of volunteers
have experience below six months.

Most of the volunteer are from the commercial sector
i.e. (65%) whereas volunteers in public sector, academic and
research sector others are 20%, 10% and 5%. Most volunteers
spent major part of their time in developing software; this
suggests that the data collected through questioners can be
accepted with confidence.

4 Findings
Table 1, shows the models and features opted to

compare different models, which may influence the selection
of lifecycle models. Each of the models has different response
to these features as discussed in fallowing sections.

TABLE (1.A) MODELS OPTED FOR COMPARATIVE STUDY

Waterfall

Prototype

Spiral

Iterative
Object Oriented

TABLE (1.B) FEATURES OPTED FOR COMPARISON

Requirement Specifications

Understanding Requirements

Cost

Guarantee of Success

Resource Control

Cost Control

Simplicity

Risk Involvement

Expertise Required

Changes Incorporated

Risk Analysis

User Involvement

Overlapping Phases

Flexibility

5 Survey Questioner to verify the performance of models
listed in table 1a.

a) Code and Fix
Identifying characteristics: Very limited or no specifications,
Software developed in an ad-hoc manner

1. Q. How long have you been using this model?
2. Q. On average, how frequently do you use this

model?
3. Q. Considering the projects or tasks for which you

use this model, how long do they take to complete?

b) Waterfall, also known as: Classical model or variant such
as 'V-model'

Identifying characteristics: Detailed documents produced
during each 'phase', clearly defined phases are executed in turn
with little or no overlap between phases, there is a single
software release

1. Q. How long have you been using this model?
2. Q. On average, how frequently do you use this model?
3. Q. Considering the projects or tasks for which you use

this model, how long do they take to complete?

c) Iterative, also known as 'Spiral'
Identifying characteristics: Same set of ordered 'phases' (an
'iteration') repeated multiple times, each iteration, addresses a
set of identified risks, System released at the end of last
iteration

1. Q. How long have you been using this model?
2. Q. On average, how frequently do you use this model?
3. Q. Considering the projects or tasks for which you use

this model, how long do they take to complete?
A week or less

d) Incremental, also known as 'Modular Development' or
'Staged Delivery'

Identifying characteristics: Software delivered in a set number
of pre-planned releases, each release builds on the previous
release, typically by adding a number of enhanced features

1. Q. How long have you been using this model?
2. Q. On average, how frequently do you use this

model?
3. Q. Considering the projects or tasks for which you

use this model, how long do they take to complete?
e) Prototyping, also known as 'Evolutionary Prototyping' or

'throw away Prototyping'
Identifying characteristics: 'Mock up' produced for evaluation
purposes, 'Mock up' likely to be used to, determine
requirements or to validate a specific design, 'Mock up'
typically developed quickly

1. Q. How long have you been using this model?
2. Q. On average, how frequently do you use this

model?
3. Q. Considering the projects or tasks for which you

use this model, how long do they take to complete?
f) Transformational also known as 'Operational

Specification' (for example 'Z') or '4th Generation
Technique'

Identifying characteristics: Code is automatically created from
a formal specification with no intermediate detailed design
steps

1. Q. How long have you been using this model?
2. Q. On average, how frequently do you use this

model?
3. Q. Considering the projects or tasks for which you

use this model, how long do they take to complete?

6 Questionnaire to evaluate impact of software
development process models on SDLC
The scenarios below are designed to understand why

particular models are chosen in specific situations.

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3024

Each scenario has been designed to test how a specific
single attribute influences lifecycle choice. (we acknowledge
that real world projects are invariably a tradeoff between many
different attributes).

The scenarios are applicable to any type of software task or
project - ranging from say a simple bug fix through to a very
large project. The examples have been chosen to be
understandable rather than representative and should not be
taken literally!

1. Q. A solution will take a considerable time to
develop. For example, a multi-million lines-of-code
solution or one that takes multi-person years to
complete.

2. Q. A solution that is particularly complex, difficult
or challenging to implement, for example, using a
very complex or novel algorithm to solve a 'difficult'
problem.

3. Q Where the solution has to be verified correct or
exhibit a very low number of errors. For example,
development of a solution in which human life would
be in danger if the system should fail unexpectedly.

4. Q. A task in which the solution requirements are
expected to change on a regular basis. For example,
developing a solution for an 'emerging market' were
the solution requirements are not initially known and
may change as the market matures.

5. Q. A task for which the client requires extensive and
accurate documentation. Typically, developing a
solution for a client with a strict quality management
system (such as ISO 9001)

6. Q. A task for which the only staff available are those
with development experience - no other managerial
or support staff are available. (The experience level
of available developers is spread equally from novice

to experienced professional). For example, this may
be an internal development projects only

7. Q. A task for which many multi-skilled personnel
are available, but all staff are considered novices in
their area of expertise.

8. Q. The client requires an unusually fast return-on-
investment for minimal initial capital expense. For
example, a start-up company with limited capital
investment.

7 Metrics used to evaluate Software development
process models
 Shortfall is a measure of how far the operational

system, at any time t, is from meeting the actual
requirements at time t. This is the attribute most
people are referring to when they ask 'does this
system meet my needs?'

 Lateness is a measure of the time that elapses
between the appearance of a new requirement and its
satisfaction. Of course, recognizing that new
requirements are not necessarily implemented in the
order in which they appear, lateness actually
measures the time delay associated with achievement
of a level of functionality.

 Adaptability is the rate at which the software solution
can adapt to new requirements, as measured as the
slope of the solution curve.

 The longevity is the time a system solution is
adaptable to change and remains viable, i.e. the time
from system creation through the time it is replaced.

 Inappropriateness is the shared area between user
needs and the solution curves. Thus captures the
behavior of shortfall over time. The ultimately
'appropriate' model would exhibit a zero area
meaning that new requirements are satisfied instantly.

IV. COMPARATIVE STUDY AND RESULTS DISCUSSION

A. Summary of Lifecycle impact on Selected Cost Drivers

TABLE 2: Comparison report

1. Product Size

Waterfall Documentation overhead suggests more suitable for larger projects.
incremental Unknown although likely to be similar to Waterfall. Can degenerate into Code and Fix under some circumstances.

Prototyping
Less suitable for larger projects. May produce less code overall (compared to Waterfall), but design may be less coherent and harder to
integrate.

Code & Fix There is no formal communication between teams which suggests it will not scale well in large projects.

2. Software Problem Complexity
Waterfall Complexity is tackled in an orderly and structured manner through separate well defined activities.

incremental Unknown although likely to be similar to Waterfall. Increased emphasis on extensible architecture .

Prototyping
Approach allows prototype solutions can be evaluated and the specification altered. Increased chance of incoherent designs (compared to
Waterfall) and undocumented 'compromises' being made.

Code & Fix Difficult to assess, although there is a lack design and limited testing.

3. Required Quality

Waterfall
Highly structured approach, while phase documentation verification reduces chances of ‘downstream’ errors (where errors are much more
costly to correct).

incremental Similar to Waterfall, although can be hard to incrementally add new functionality without de-stabilizing existing functionality.
Prototyping Undocumented compromises may affect quality however release QA activities should detect this.
Code & Fix Problems discovered late due to lack of specification, design and limited testing leading to higher costs and chances of regression fault.

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3025

4. Requirements Volatility
Waterfall Process discourages ‘upstream’ changes since they become exponentially more expensive (due to rework) as project progresses.

incremental
Process can start without complete requirements (not ideal), but requirements should remain relatively static within a stage (to avoid
potential for ad-hoc changes).

Prototyping
Can be used to resolve ambiguous or unknown requirements or specifications. Improves quality and accuracy of specification reducing
cost of downstream changes.

Code & Fix Requirements can be changed as required since there are none! Ultimately, may not match needs as there is no specification

5. Amount of documentation

Waterfall
Detailed documentation is primary method for knowledge transfer between phases. All documentation subject to validation and verification
activities.

incremental Unspecified - depends on project, although likely to be similar to Waterfall.
Prototyping Likely to produce less documentation (although documentation process can be added if required).
Code & Fix No documentation required - left entirely up to developer.

6. Experience of Personnel

Waterfall Can be used with weak or inexperienced staff since ordered structure helps to minimize wasted effort.
incremental Similar to Waterfall, but requires skilled multi-disciplined staff to manage stage release inter-dependencies.

Prototyping
Objective and scope setting with prototype design, implementation and evolution through feedback suggest experienced personnel are
required.

Code & Fix Anyone can use it - no management experience required. 100% of effort focused on coding (and fixing).

7. Availability of Personnel for Project

Waterfall
Project can be planned initially allowing multi-skilled / experienced staff to be used only as required - documentation level helps
knowledge transfer and training.

Incremental Experienced management and developers required to schedule and resolve dependencies between increments.

Prototyping
May require skilled management to determine prototype objectives or scope. Developer must be able to interpret and respond to customer
feedback appropriately.

Code & Fix Only developer experience required - no management experience.

8. Project Duration
Waterfall No usable software until the very end of the project - although documentation may have some tangible value.

Incremental Incremental delivery, allowing staged payment and providing faster return on investment.

Prototyping
Users see progress in form of prototype very early. However, customer may object to paying for a redevelopment once they see a
'working' prototype.

Code & Fix No means of assessing progress, identifying risk, or measuring quality. Software may be delivered or not.

9. Lifecycle Usage based on Task Duration

Process Model less than a week Over a week to Month Over a month to 3 months Over 3 months to Year Over an Year

Code & Fix 48% 17% 21% 7% 7%

Waterfall 6% 6% 9% 46% 33%

Incremental 0% 11% 14% 50% 25%

Prototyping 0% 14% 34% 33% 19%

B. Comparison report and discussion on features impact:

Feature
Waterfall

Model
Prototype Model Spiral Model Iterative Model

Object Oriented Model
(Combination of incremental and

iterative)

Requirement Specifications Beginning
Frequently
Changed

Beginning Beginning Frequently Changed

Understanding Requirements Well Understood
Not Well

understood
Well

Understood
Not Well

understood
Well understood

Cost Low High Intermediate Low Peak

Guarantee of Success Low Good High High Peak

Resource Control Yes No Yes Yes No

Cost Control Yes No Yes No Sure

Simplicity Simple Simple Intermediate Intermediate Complex

Risk Involvement High High Low Intermediate Dependent of requirement changes

Expertise Required High Medium High High Obvious in all phases

Changes Incorporated Difficult Easy Easy Easy
depends on resource experts

availability

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3026

Risk Analysis
Only at

beginning
No Risk Analysis Yes No Modular approach

User Involvement
Only at

beginning
High High Intermediate Dependent of requirement changes

Overlapping Phases No Yes Yes No Dependant of requirement changes

Flexibility Rigid Highly Flexible Flexible Less Flexible Peak

1. Requirement Specification
Requirement specifications are needed just at the

beginning of the Wa11erfall model, Spiral model and Iterative
model, however for Prototype model and Object oriented
model process the requirement specifications are frequently
changed during the development process [2].
2. Understanding Requirements

Waterfall model, spiral model and Object oriented model
needs well understanding of the requirements, while prototype
model and Iterative model do not need good understanding of
the requirements [3].
3. Cost

Data was obtained for a cost driver value of ‘very high
quality’ (expressed as’ very low number of errors’ or ‘errors
threatens human life’). The data shows that Waterfall and
Iterative models are used for projects, which have low cost
requirements for software development, where as for projects
with intermediate cost Spiral model is suitable, while the
Prototyping model is suitable for projects with more cost than
waterfall model and Spiral model. While the Object oriented
process model leads to very high cost [4].
4. Guarantee of Success

As per the research work if we use waterfall model for
software projects the guarantee of success is very low, but on
the other hand if we use Prototype model the guarantee of
success is good, but again spiral model and Iterative model
have intermediate guarantee of success between good and
high. However out of all the five models under taken for this
study, the model have very high guarantee of success.
5. Resources Control

From the research work, it is concluded that prototype
model and model do not have their control over resources, but
on the contrary waterfall model, spiral model and iterative
models have control over resources.
6. Cost Control

Data was obtained for a cost driver value of ‘range of
development experience’. The Prototyping model and Iterative
model are only models, which don’t have their cost control
features, which make them inappropriate. The data values for
the Waterfall, spiral and models are also supported by this
study, because they have cost control feature, which make
them best compared to others, as cost control factor is
important for all software projects.

C. Comparison of percentage of failures occurred in different

phases of the development models
We can observe in Graph 1 that traditional software

development model such as waterfall model is not feasible on
large projects with frequent requirement specification changes

Graph1: The comparison report: Failures of waterfall and
Object Oriented Models on large project with frequent
changes requirement specification

Graph 2: deviations / cost effecting development stages of
structural model (spiral) and object oriented model on
small size project with no changes in requirement
specification during development process.

In graph 2: we can observe that the traditional models
called spiral and object oriented model committing equal
efficiency in majority of the development phases as in the
farm of integration cost, deployment cost and
maintenance cost the Object oriented model is too high
when compared to spiral model. Hence we can argue that
the traditional software development models such as
waterfall, spiral, incremental models are feasible to
develop small size projects with stable requirement
specifications.

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3027

V. CONCLUSION
After completing this paper, it is concluded that as with

any technology or tool invented by human beings, all SE
methodologies have limitations [9], The software
engineering development has two ways to develop the
projects that: structural or procedural approach and
object-oriented approach, the structural or procedural
models are feasible in terms of integration, deployment
and maintenance but limited to small projects with stable
requirement specification. These structural or procedural
approaches lead software developers to focus on
Decomposition of larger algorithms into smaller ones.

The object-oriented approach to software development

has a decided advantage over the traditional approach in
dealing with complexity, which is common preference of
large projects with frequent changes in requirement
specification and the fact that most contemporary
languages and tools are object-oriented. In future it is
recommended to conduct research to design cross models
of the existing that includes the features of traditional
approach and object-oriented approach and finding
updates for some traditional approaches to improve their
robustness and intensifying the object-oriented approach
to support the development of small scale projects under
object oriented model.

REFERENCES

[1] Mike O’Docherty, "Object-Oriented Analysis and Design Understanding

System Development with UML 2.0", John Wiley & Sons Ltd,
England, 2005.

[2] Molokken-Ostvold et.al, “A comparison of software project overruns -
flexible versus sequential development models”, Volume 31, Issue 9,
Page(s): 754 – 766, IEEE CNF, Sept. 2005.

[3] Boehm, B. W. “A spiral model of software development and
enhancement”, ISSN: 0018-9162, Volume: 21, Issue: 5, on page(s): 61-
72, May 1988.

[4] Abrahamsson P. et.al, “Agile Software Development Methods: Review
and Analysis”, ESPOO, VTT Publications 478, VTT Technical Research
Centre of Finland. http:/www. fi/pdf/publications/2002/P478.pdf, 2002.

[5] Dennis, A., Wixom, B. H. and Tegarden, D., “Systems Analysis and
Design: An Object-Oriented Approach”, John Wiley & sons, New York,
2002.

[6] Roger S. Pressman, “Software Engineering a practitioner’s approach”,
McGraw-Hill, 5th edition, 2006.

[7] M M Lehman,”Process Models, Process Programs, Programming
Support”, ACM, 1987

[8] Tim Korson and John D. McGregor,” Understanding Object-Oriented: A
Unifying Paradigm”, ACM, Vol. 33, No. 9, 1990

[9] Li Jiang and Armin Eberlein,” Towards A Framework for
Understanding the Relationships between Classical Software
Engineering and Agile Methodologies“, ACM, 2008

[10] Luciano Rodrigues Guimarães and Dr. Plínio Roberto Souza Vilela,”
Comparing Software Development Models Using CDM”, ACM, 2005

AUTHORS

Nabil Mohammed Ali Munassar

Was born in Jeddah, Saudi Arabia in
1978. He studied Computer Science at
University of Science and Technology,
Yemen from 1997 to 2001. In 2001 he
received the Bachelor degree. He studied
Master of Information Technology at
Arab Academic, Yemen, from 2004 to
2007. Now he Ph.D. Scholar in CSE at
Jawaharlal Nehru Technological
University (JNTU), Hyderabad, A. P.,
India. He is working as Associate
Professor in Computer Science &
Engineering College in University Of
Science and Technology, Yemen. His
areas of interest include Software
Engineering, System Analysis and
Design, Databases and Object Oriented
Technologies.

Dr.A.Govardhan

 Received Ph.D. degree in Computer
Science and Engineering from
Jawaharlal Nehru Technological
University in 2003, M.Tech. from
Jawaharlal Nehru University in 1994
and B.E. from Osmania University in
1992. He was working as a Principal of
Jawaharlal Nehru Technological
University, Jagitial. He has published
around 110 papers in various national
and international Journals/conferences.
His research of interest includes
Databases, Data Warehousing &
Mining, Information Retrieval,
Computer Networks, Image Processing,
Software Engineering, Search Engines
and Object Oriented Technologies

Nabil Mohammed Ali Munassar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3022 - 3028

3028

