
Parallel Algorithm for Adding Long Integers
Sanjeev Gangwar1, Prashant Kumar Yadav2

Department of Computer Application1 , Department of Computer Science & Engineering2

VBS Purvanchal University,Jaunpur, India

Abstract:In the new era of computing, people want to spend less

time for any type of computation. In this paper, we are going to

present a new algorithm for addition in parallel environment for

PRAM model. Hence we are using more than one processor for

performing our addition. The number of processor used depends

upon the maximum number of digits given as input to the

algorithm. In this algorithm, first of all we store a given number in

a one dimensional array. Hence for each number we use individual

one dimensional array. For each address of array, we allot an

individual processor for addition. Hence the number of processor

is equal to the size of largest array. The results of every processor

is stored in a new array called “Resulting array”, on the last step

of algorithm, we use an extra processor for adding each elements

of resulting array .In this way, we can easily perform a largest

calculation of addition in single unit of time. This algorithm takes

a very less time, and space. Hence it is very optimal algorithm for

parallel addition. We will implement the idea of algorithm is c

programming language which provides better environment to

implement our idea.

Keywords: Parallel processing, PRAM model, CREW, SIMD

architecture.

I. INTRODUCTION

The proposed paper is designed for the larger and typical

addition in parallel environment. The intended audiences are

those people who want to spend very less time for calculation

and can spend more memory. The idea behind this algorithm is

as given below: The designed algorithm uses N processors,

depends upon the largest array size. The one dimensional array

is used for storing a given input number, where the elements of

array represents the digits, present in given input number. The

single and individual array is used for storing a single number;

hence the number of array is equal to the number of given input

numbers. For adding the elements of ith address space of each

and every, array, we use a single processor.

II. PARALLEL COMPUTING

Parallel computing is a method for solving the longest

calculation. In this more than one processor are used and

worked concurrently. A parallel computer is a multiple

processor computer that is capable of parallel processing.

Parallel processing is information processing that emphasize

the concurrent manipulation of data elements belonging to on

ore more processes solving a single problem. The advantage of

parallel processing over serial execution is to speed up the

processing capability and increase throughput. Parallel

processing is established by distributing the data among the

multiple functional units.

A. PRAM model

To properly design a parallel algorithm, alternative model of

computation underlying the parallel computer is required. The

extension of RAM (Random access Machine)model for

sequential algorithm is referred as PRAM (Parallel Random

Access Machine) model. This PRAM model used for parallel

computations is described as follows:

 A PRAM (Parallel Random Access Machine) model

consists of a control unit, Global memory and

unbounded set of processors with their own private

memory.

 Every processor has a unique index which is used to

enable or disable the processor or identify with

memory location it access.

 All communication is performed by a shared memory.

 All active processors execute identical instruction.

 Processors have read, compute, and write phases that

happen synchronously.

 PRAM computer’s instruction will execute in 3-phase

cycle:

 Read

 Local computation

 Write

 PRAM computation starts with a single active

processing element and the input stored in global

memory. During every step of computation an active,

enabled processor(which readsinput value from single

private or global memory location) performs a single

RAM operation and output is written into one local or

global memory location.

 On the other hand, during a computation process, a

processor have a capability to activate another

ACEIT Conference Proceeding 2016

IJCSIT-S248

processor on their need. All active, enabled processors

must execute the some instruction, on different

memory locations. The computation process ends

with the halt of last active processor.
 Cost of PRAM computation =parallel time complexity

* number of processors used. where parallel time

complexity= time elapsed in executing all the

instruction simultaneously.

B. Classification of PRAM

The ability to perform operations of PRAM depends on the

accessing method to the shared memory location. PRAMs are

classified based on Read/ Write abilities. According to read or

write conflicts i.e., when two or more processorsare used to

read or write to the same global memory location, four memory

update are possible:
 Exclusive Read (ER). Allow at most one processor

to read from any memory location .This is most

restrictive policy.

 Exclusive Write (EW).Allow at most one processor

to write into a memory location at a time.

 Concurrent Read(CR). Allow multiple processors

to read the some information from the some

memory location at a time.

 Concurrent Write (CW) .Allow simultaneous

write to the same memory location .In order to

avoid confusion, some policy must be setup to

resolve the write conflicts.

III. ALGORITHM FOR SLAVE PROCESSORS

SUM (CREW, PRAM)

Initial Condition:

List of n>=1 element stored in one dimensional array.

Final Condition: Sum of element stored in RA[i].

Begin

Spawn (P0,P1,P2,………..,Pn-1)

For all Pi where (i=0 to n-1)

do

{

RA[i] A[i]+B[i]+C[i]+…………+N[i]

}

end

endfor

end
Processors
P(0) P(1) P(2) P(3) P(4) ……………. P(n-1)

………..

A[0] A[1] A[2] A[3] A[4] ………………A[n-1]

………..

B[0] B[1] B[2] B[3] B[4] ………………B[n-1]

………..

C[0] C[1] C[2] C[3] C[4] …………….C[n-1]

.

.

.

………..

N[0] N[1] N[2] N[3] N[4] ……………N[n-1]

………..

RA[0] RA[1] RA[2] RA[3] RA[4] …………...RA[n-1]

Figure 1 Structure of working of Slave Processors.

A. Algorithm for resulting processor

SUM(EREW, PRAM)

Initial Condition: List of n >=1element stored in A[0……n-1]

Final Condition: Sum of element stored in A[0]

Global Variables: n, A[0…….n-1],j.

Begin

Spawn (P0,P1,P2,……….P n/2-1)

For all Pi where 0<= i <=n/2-1
do

For j=0 to [logn]-1
do
If i modulo2j =0 and 2i+2j < n then

A[2i] A[2i] + A[2i+2j]

Endif

Endfor

Endfor

End

………..

ACEIT Conference Proceeding 2016

IJCSIT-S249

RA[0] RA[1] RA[2] RA[3] RA[4] …………..RA[n-1]

 ………..

………..

………..

Final Result

Figure 2: Structure for working of Resulting Processor

B. Time complexity

The time complexity for the algorithm of slave processors is

order of n. and the time complexity of resulting processor

algorithm is order of log(n).Hence the overall time complexity

of these algorithms is order of (n + log(n)).

C. Cost optimality
Hear, if we calculate the cost of solving a problem on a single

processing element then it will be the execution time of the

fastest known sequential algorithm. Now if we talk about

parallel computing, then cost optimal parallel algorithm is an

algorithm for which the cost have the same complexity class as

an optimal sequential algorithm.

IV. CONCLUSION

In this paper we have represented a new way of adding long

digit numbers with the use of sequential and parallel both

algorithms. Here in sequential algorithm, more than processors

are used to perform addition operation. The result of each

processor is stored in new Resulting array. After this, At second

step, the element of Resulting array are given as input to

parallel addition algorithm.

V. FUTURE SCOPE

This paper is proposed to represent the addition algorithm for

long digit numbers using both sequential and parallel approach.

but the time complexity of proposed algorithm is very high, so

we can work in future to minimize the time complexity of the

algorithm using PRAM additional algorithms and we can also

work on this to minimize the number of processors working at a

time. Hence we can also work on it to minimize the cost of this

algorithm.

REFERENCES

[1] Parallel Computing, “Michel .J.Queen” Pearson .
[2] Parallel Algorithms “S.J. Akl ” TMH.

[3] Design and analysis of algorithms, “J.D.Ullman” Pearson.

[4] Sequential and parallel algorithm for the addition of big integer number
“Youssef Bassil, Aziz Barbar” International Journal of Computational Science

Vol.4 No.1 pp.52-69, 2010.
[5] B. fagin fast addition of large integers. IEEE transactions on computer.
[5] Lidong Zhou “Algorithm Concept”

http://www.cs.cornell.edu/home/ldzhou/algo.pdf

ACEIT Conference Proceeding 2016

IJCSIT-S250

